

Community of Practice: Western Indian Ocean, Ocean Accounts Work Programme 2 Technical Report: November 2021 **OVERVIEW**

Ocean Accounts Framework applicability in Algoa Bay.

Erika Brown & Hayden Wilson GIS Product Developer & Data Scientist

Team:

Tommy Bornman – Project lead and SAEON Elwandle Node Manager Nicole du Plessis – Project lead and SAMREF/SA IORAG Science Officer Juliet Hermes – Project lead and SAEON Egagasini Node Manager Erika Brown - GIS product developer, research associate and consultant Hayden Wilson – Data Scientist SAEON uLwazi Node

1. Executive Summary

The rapid advancement of digital technology has resulted in an abundance of online data visualization and analysis tools which can be readily applied to marine science and the management of our marine resources. Progress in the fields of online data visualization and analysis has allowed for significant advances in marine systems monitoring. Considered the last frontier on earth for research and development, the oceans are equally a challenge in systems understanding, as well as access to its depths. By combining current technologies, the physical, biological and digital spheres can be accessed and analysed remotely as well as reported on in a framework and style that supersedes our wildest imaginings as marine research scientists working alongside decision makers.

In addition to this paradigm change in the measurement of our oceans, the ocean itself is changing and therefore our approach to managing it must also adapt. The Global Oceans Accounts Partnership is leading a worldwide shift to this inevitability through the advent of the Ocean Accounts Framework. Ocean Accounts provides an opportunity for collaborative work towards sustainable development of oceans and coasts by valuing the system and its resources (market and non-market) in a holistic and inclusive manner that goes beyond the limiting view of Gross Domestic Product valuation in monetized terms. Awareness of this shift and promotion towards a more holistic approach to monitoring our seas is advanced through the development of online data visualization and decision support-based tools which can aide management practices and decision maker's responsibility to make the most informed decisions.

South Africa is one of five countries participating in the UN Natural Capital Accounting & Valuation of Ecosystem Services Project (led by Stats SA and SANBI nationally) which aims to assist the participating partner countries to advance the knowledge agenda on environmental and ecosystem accounting and initiate pilot testing of the System of Environmental-Economic Accounting (SEEA) Ecosystem Accounting (EA), with a view to improving the management of natural biotic resources, ecosystems and their services at the national level as well as mainstreaming biodiversity and ecosystems in national level policy, planning and implementation.

Within this, the Ocean Accounting component and the NRF Communities of Practice - 'Western Indian Ocean: Assessing the applicability of the ocean-accounts framework' aims to engage with these international programmes to develop oceans accounts in South Africa and contribute to the above mentioned initiatives.

In answer to this call an alpha version online data visualization tool has been created for viewing and interacting with Ocean Accounts development in Algoa Bay, Gqebehra, South Africa. This technical report documents progress to date.

Acknowledgement: This research was funded by the South African Research Chairs Initiative through the South African National Department of Science and Innovation/National Research Foundation, by a Community of Practice grant in Ocean Accounts Framework (UID: 125455). The opinions expressed in this publication are not necessarily those of the funding bodies.

Table of Co	ontents	
1.	Executive Summary	2
2.	Introduction	5
2.1	Background	7
2.2	Spatial Database	13
2.3	Online GIS Platforms and User Tools	13
2.4	Remotely Sensed and Modelled Data	14
2.5	OAF Ecosystem Accounting Tables	17
3.	General Methods	19
3.1	Data Collection and Curation	19
3.2	Data Visualization Platform	20
3.3	User Interface Development	23
4.	Results	24
5.	Conclusions	29
6.	References	30
7.	Appendix I	31
8.	Appendix II	32
9.	Appendix III	37
10.	Appendix IV	40

List of Acronyms

- AODN Australian Ocean Data Network
- BGIS Biodiversity Geographic Information System
- BSU Basic Spatial Unit
- CoP Community of Practice
- CPUT Cape Peninsula University Technicon
- CSIR Council for Scientific and Industrial Research
- DEFF Department of Environment, Forestry and Fisheries
- DST Department of Science and Technology
- EA Ecosystem Accounting
- EBSA Ecological and Biological Significant Area
- EEZ Exclusive Economic Zone
- ESRI Environmental Systems Research Institute
- GDP Gross Domestic Product
- GIS Geographic Information System
- GOAP Global Oceans Accounts Partnership
- IMOS Integrated Marine Observing System
- IODE International Oceanographic Data and Information Exchange
- IORA Indian Ocean Rim Association
- MARISMA Marine Spatial Management and Governance Programme
- MBSU Marine Basic Spatial Unit
- MSDI Marine Spatial Data Infrastructure
- MSP Marine Spatial Planning
- MMU Nelson Mandela Metropolitan University
- NBA National Biodiversity Assessment
- NCA Natural Capital Accounting
- NRF National Research Foundation
- NSDI National Spatial Data Infrastructure
- OAF Ocean Accounts Framework
- OCIMS National Oceans and Coastal Information Management System
- SEEA System of Environmental Economic Accounting
- SAEON South African Environmental Observation Network
- SAIAB South African Institute for Aquatic Biodiversity
- SAMREF South African Marine Research and Exploration Forum
- SANBI South African National Biodiversity Institute
- UN United Nations
- WIO Western Indian Ocean
- WP Work Programme

2. Introduction

Western Indian Ocean countries are steadily turning to their oceans to stimulate economic growth and ocean resource - use security in what are termed ocean economies. Governance of such resource – uses is becoming critical in ocean policy development and management, and "blue economy" approaches places sustainability and inclusivity at the centre of such governance. Because ocean policy development has an intrinsic spatial component, countries are turning to Marine Spatial Planning or Integrated Coastal Zone Management to drive the necessary trade-off decision making processes. Trade-offs require value estimations and ocean economies have in the past been largely valued as sectoral contributions to Gross Domestic Product (GDP). By providing gualifiable and guantifiable physical and monetarised values of the benefits from and costs to economic, social and environmental systems of an ocean economy, ocean accounts provide important inputs into spatial planning, economic strategy development, sustainability indicators and measures of inclusivity that are consistent and standardised across spatial and temporal domains (Findlay et al., 2020). Value metrics estimated over time provide trend data that are critical in evidence-based ocean governance and policy development, including trade-offs to balance ocean resource use, sustainability and inclusivity (Figure 2.1).

Figure 2.1 An example of Ocean Accounts Framework data flow to inform planning, management and policy makers.

Ocean Accounts forms a holistic valuation, a step in the larger process to policy and governance. Ecosystem extent accounts, along with ecosystem condition accounts, usually form the basis of the Ocean Accounts ecosystem accounting process. Below is a diagram to show OAFs position within the greater MSP process (**Error! Reference source not found.**). As our oceans change, as measurement of our oceans change, and as our use and protection of our oceans and its resources change, Ocean Accounts can support monitoring and adapting to these inherent changes.

Figure 2.2 A diagram depicting a holistic approach to valuating Natural Capital and how OAF informs policy, governance, government and society and can support and assist Marine Spatial Planning processes.

The ocean accounts framework (OAF) enables countries to monitor three important trends:

- changes in ocean wealth, including "non-produced" ecosystem assets;
- ocean-related income and welfare for different groups of people; and
- ocean-based economic production.

Within South Africa, the aim of this part (Work Programme 2) of the larger GOAP Africa project is to provide an online public space easily accessible to local, national and international scientists, researchers, and decision makers involved in management and policy, where Ocean Accounts maps, layers, data and information can be viewed, manipulated and downloaded. This is achieved through the integration and analysis of both spatial and non-spatial datasets within a geographic information system (GIS) and through the publication of the outputs of these studies within publicly available atlases which have been designed to enable data interpretation, exploration and download. GIS is used to make maps that communicate, perform analysis, share information, and solve complex problems. In a marine context, applications include identifying problems, monitoring change, understanding trends, managing and responding to events, performing forecasting and setting priorities. GIS data includes imagery, features, and base maps linked to spreadsheets and tables. Interactive maps are the geographic vessel for the data layers and analytics that can be easily accessible. GIS maps are easily shared and embedded in a multitude of applications. By combining an interactive mapping platform with an online data visualization tool, the power in analytics of large amounts of data can be realized and provides an invaluable resource for scientists, researchers, management bodies and decision makers alike. This sort of technology can support the development and implementation of the Global Ocean Accounts Partnership (GOAP) Ocean Accounts Framework in South Africa and the Western Indian Ocean region.

Work Package 2 of the Ocean accounts framework for South Africa utilises data sourced from the following Organisations:

- South African Environmental Observation Network (SAEON) Elwandle node,
- the Algoa Bay Project, South African Institute of Aquatic Biodiversity (SAIAB)
- South African National Biodiversity Institute (SANBI) National Biodiversity Assessment (NBA) 2018.

Additionally, the project aims to work extensively with external partners, including the Global Ocean Accounts Partnership (GOAP), the High-Level Panel for a Sustainable Ocean Economy (through GOAP), Western Indian Ocean Governance Exchange Network (WIOGEN), Indian Ocean Rim Association (IORA) Academic Groups and the African Natural Capital Accounts Working Group on Ocean Accounts as well as draw on the National and local work by SANBI NBA 2018 and The Algoa Bay Project working group, respectively. We also endeavor to engage with and share in as many additional local, regional, and national groups as feasible and willing going forward.

For the purposes of this project a combination of interactive mapping and data visualization applications have been selected and described in context and technical detail on the development and implementation of these tools provided in the following report.

2.1. Background

Introduction to GIS

Digital technology is expanding exponentially. The capacity to collect, store, analyse and manipulate data, at a global scale is unprecedented. The digital revolution is characterized by a combination of technologies that is obscuring the lines between the physical, digital, and

biological spheres. This fact bodes well for the marine environment which historically has been a difficult environment to access at depth, is under monitored, and possibly underestimated in its significance to the balance it maintains and supports for earth as a functioning, importantly for humans, habitable, system. We have reached a time where transdisciplinary scientific experts working collectively will rapidly propel marine systems monitoring and understanding forward through the digital technology medium. One of many examples of this occurring is through the advent of online data analysis and visualization platforms which often centre on a geographic information system.

A geographic information system (GIS) is a system that creates, manages, analyzes, and maps all types of data. GIS connects data to a map, integrating location data with all types of descriptive information. This provides a foundation for mapping and analysis that is used in many science disciplines and numerous industries. GIS helps users understand patterns, relationships, and geographic context. The benefits include improved communication and efficiency as well as better management and decision making.

Study Region

Algoa Bay is situated in Gqebehra, South Africa and is a representative area to test applicability of this framework and associated online tools because of its complex web of marine users, productive upwelling environment, dynamic oceanographic forcings in the bay, long term data availability, multi-organisation collaborations are ongoing, and topical work underway through the work of The Algoa Bay Project and the Marine Spatial Planning (MSP) strategy (under the jurisdiction of the new Marine Spatial Planning Act (Government of South Africa, 2019)).

Data types and variables used in WP2 of OAF

Basic elements of the spatial data infrastructure in an OAF should include shoreline, bathymetry and the designation of spatial units (i.e., Marine Basic Spatial Units (MBSUs or BSUs for short) based on a grid or other spatial framework) (Figure 2.3). Other elements would be overlaid as either asset types, uses or conditions.

Figure 2.3 A series of maps showing the basic elements of the spatial data infrastructure for Algoa Bay (study area, 10 m contour bathymetry, SANBI 2018 ecosystems types, and bay scale grid).

The choice of condition measures will be informed by national priorities and data availability in future. For example, data on nutrient concentrations would inform concerns about algal blooms or eutrophication, chlorophyll-*a* data can give an indication of biological productivity, while sea temperature and sea height can indicate warming or cooling trends over time or sea level change. There are many approaches to "reference condition" and these should be agreed and policy relevant (e.g., pristine, sustainable, specific date in the past, pre-industrial, etc.). Generally, reference conditions should be distinct from "target conditions", which may be set by policies, but not necessarily consistent with maintaining or improving capacity to provide optimal long-term ocean services.

Some key condition variables that would inform multiple ocean-related concerns include:

- pH (acidity)
- BOD, COD, Chlorophyll-*a*, primary productivity (and / or an indicator of eutrophication)
- Species diversity, ecosystem diversity (Shannon index of diversity)
- Concentration of floating plastics

- Sea surface temperature (SST)
- Coral condition (cover, % living, %bleached)
- Seagrass and mangrove cover (%)

In the case of Algoa Bay, seagrass and mangrove cover could be replaced by kelp forest cover (% cover) for instance.

Data from the Algoa Bay SAEON Sentinel Sites, NMU, SAIAB, and Rhodes University has been utilized to inform a case study application of the OAF (Figure 2.4). Gully Temperature Probes (GTU), Underwater Temperature Recorders (UTR), Acoustic Doppler Current Profiler (ADCP), and Conductivity Temperature Depth (CTD) instruments that have been recording oceanographic conditions as a part of a long term monitoring project in Algoa Bay will be used. Oceanographic and biological variables will include depth (m), sea temperature (°C), salinity (PSU), dissolved oxygen (ml/L), nutrients (nitrate, phosphate, silicate in μ M), turbidity (NSU) and chlorophyll (Chl-*a* mg m⁻³). While data spanning 2008 -2020 exists and will be incorporated by the end of 2021, initially data from 2018 and 2019 were used. Most of the data captured is up to 30 m depth, with exceptions up to 70m.

Figure 2.4 A map showing the SAEON Sentinel Site and associated instrument locations in Algoa Bay. Data from the PELTER Stations, CTDs, UTR thermistor, UTR Gully Probes and the ADCP's will be used to create a GIS database and associated spatial layers.

The ocean is large, three-dimensional, moving, much is outside national jurisdictions and spatial data are collected by many local, national and international organizations. This

poses challenges to mapping; therefore, only 20 percent of the global ocean seafloor has been mapped in terms of depth (bathymetry) and less than 0.001 percent has been sampled in terms of substrate and biota (DOALOS, 2016, Chapter 33). Although remote sensing provides global data, only the surface of the ocean is visible from satellite. This requires special attention to establishing a spatial data infrastructure that will serve to integrate many types of data including from local in situ studies.

While extensive data sets do exist in this area, one of the key aims of this work is to discern which data sets and related locations, in x, y and z space, are relevant and applicable for OAF purposes.

Following a study by Sayre et al., 2017 (Figure 2.5), an ocean mesh for assessing extent and condition of oceanographic variables in x, y, z space will be used: from a global to a regional context, Algoa Bay grid zonation (Figure 2.3) will be defined as:

- 100m x 100 m grid blocks (1 ha)
- Additionally, 25m, 50m, resolution (5m when considering estuarine data) will be considered
- Discrete point data should fall within 50 m of centroid within block
- Cluster data at the centroid.
- Column of oceanographic data represented up to 70 m depth with current data sets

The WP2 group suggestions for delineating extent for oceanographic variables being considered are as follows*:

- Extent in an oceanographic context has not only x and y values, but also z values so we will look at 2D and 3D extent
- In the horizontal, Dunes, beaches and rocky shore Onshore Zone
- High water mark to 60 m depth contour Coastal System Zone
- 60 m depth contour to +200 m depth contour Offshore Zone, past 200 m depth (Shelf edge -Neritic Zone)
- In z space, or vertical, 2 zones within the photic zone, 0 30 m through the water column, and 30 200 m
- Data will be batched into 5 Levels -Sea surface (0 2 m), Water column (WCI, 0 30m (in 10 m intervals initially) and WCII, 30 - 200m (I 10 m intervals initially)), Sea floor, and Sub sea floor
- Both spatial and temporal disaggregation in data will need to be flagged and tracked

*It's important to note that the MSP group have categorized horizontal extent in AB as follows: Onshore- ~50 m above the high water mark to the low water mark, Coastal System- 0 (low water mark) to 60 m depth, Offshore- 60 m to depth (presumably 500m), Marine Islands, and last, Kelp Forests and Shallow Reefs. At some stage in the near future, a standardized zoning should be agreed upon and set. We have adjusted our classifications to align with this work for the time being.

Figure 2.5 Sayre et al., 2017 global ocean mesh grid system and associated xyz water column with centroid representation, on the left. Example of Algoa Bay local scale1 ha grid system with centroid points, on the right.

The Basic Spatial Unit (BSU) may be as small as a remote sensing image pixel (30-100m), a national grid reference system (1nautical mile) or small administrative units (e.g., marine statistical area). Smaller BSUs have the advantage of being more homogenous. That is, when delineating ecosystem extent, some ecosystems, such as mangroves, or estuaries, may be in strips of 5m wide and therefore undetectable by satellite at 100m resolution. Since ecosystems tend to be more complex in coastal areas and data tends to be more generally available, some countries maintain data at finer resolution near the coast. In this case, it may be practical to distinguish between coastal units (CBSU) and marine units (MBSU).

Out of 150 SANBI (NBA 2018) ecosystem (habitat) types along the SA coastline, 15 are present and delineated in Algoa Bay (SANBI NBA, 2018). The goal is to establish extent and condition in an OAF to derive ocean ecosystem types. The two approaches are connected but different. Will biodiversity ecosystem types correlate to ocean based ecosystem types? Will there be crossover, differences, similarities? When the z factor is included as defined Levels (depth) how will the ecosystem type change or not? These are questions that will be considered through the second phase of WP2.

2.2 Spatial database

Ocean accounts can be built from maps (spatially explicit) or tables (spatially independent), but the power is in combining them. Maps can be used to generate tables and data in tables can be allocated to areas of the ocean.

The following guidance is provided in the Global Ocean Accounts Partnership, Technical Guidance on Ocean Accounting for Sustainable Development, United Nations, 1st edition, 2019. Establishing the spatial database for Ocean Accounts is an important early step that will facilitate the integration of spatial data from many sources. If the data sources already adhere to the standards of a National Spatial Data Infrastructure (NSDI) that includes coastal and marine areas (or Marine Spatial Data Infrastructure, MSDI), then spatial standards will not have to be developed specifically for the pilot. If not, then an ocean accounting pilot may be the catalyst to expand an existing NSDI to the country's EEZ. These considerations will be developed further and synchronized among all of the WPs by WP3 and to some degree in WP2.

Many pilots have begun by compiling maps as a basis for a physical ocean asset extent account. If there is no NSDI/MSDI, then standards such as shoreline vector, definition of "coastal", projections and scales will need to be established. It is possible to generate initial analytical results by overlaying spatial data in a GIS without creating an integrated spatial data infrastructure. However, this does not facilitate the production of the accounting tables. That is, to produce a physical Ocean Asset Extent Account, it is best to first align data (e.g., separate maps of mangroves, coral, seagrasses, kelp beds etc.) using the same shoreline and spatial units. Doing this will ensure validation of the data by revealing gaps and overlaps.

Although the Ocean Accounts Framework suggests spatial units and ecosystem classifications, pilot physical Ocean Asset Extent Accounts typically begin with existing national spatial units and ecosystem classifications. SANBIS NBA 2018 will be largely drawn upon as well as the work of NMUs The Algoa Bay Project Conservation Management Plan and the greater MSP group for reference and where relevant comparison.

2.3 Online GIS platforms and user tools

In an attempt to assess the applicability of the role that oceanographic data can play in the OAF a brief review of already available GIS platforms and online user tools was conducted (Figure 2.6, see Annex 2). In addition a detailed synopsis of data to be compiled, global and regional data providers and sources, and an Algoa Bay focused data catalogue have been compiled and can be viewed in Annexes 1 – 3 at the end of this report.

The novel aspects of ocean accounting means that there is considerable scope for experiential dialogue from across African case studies in the accounts refinement process as well as drawing on work already underway internationally with respect to development and implementation, and in the manner of use in decision making processes.

Figure 2.6 GIS based online user platforms for viewing oceanographic data (see Annexes 2 - 4 for references and more information).

2.4 Remotely sensed and modelled data

In a country like South Africa, where *in situ* data can be costly and sparse, remotely sensed and modelled data plays an important role for assessing the state of an ocean ecosystem. SAEON Egagasini node has demonstrated the advances in modelled hind and forecasted oceanographic data for Algoa Bay.

Recent work within OCIMS on bay scale modelling 'downscales' global ocean models (BRAN, HYCOM, GLORYS) to high resolution over Algoa Bay (~500 m) where hindcast simulations validated against 2.5 years of in-situ observations from ADCPs, UTRs and GTPs located in the Bay provide a snap shot of sea surface temperature (Figure 2.7 and Figure 2.8). Along with supporting various research and training objectives, uses for this type of product include scenario testing (for managers and policy makers) as well as identification and dissemination of key historical metrics and indicators.

For the purposes of Ocean Accounts, satellite data will be used to fill in any data gaps and importantly to provide wide reaching coverage when considering the EEZ and WIO region at large. Wherever possible local *in situ* data will be prioritized and can help to verify modelled data.

Figure 2.7 Downscaling of global ocean models, BRAN, HYCOM, GLORYS, for the purpose of high resolution hindcasting of SST over Algoa Bay.

Figure 2.8 Evaluation of Algoa Bay model against in situ observations provided by SAEON eLwandle coastal node and of Lwandle Marine Environmental Services (on behalf of PetroSA).

2.5 OAF ecosystem accounting tables

Finally, examples of the associated accounting tables for Ecosystem Accounting within an Ocean Accounts Framework where stock accounts and flow accounts are broken up into physical accounts and monetary accounts respectively are an important part of the documentation (Figure 2.9). Once finalized by the WP3 team, these accounts will be linked to the GIS platform. The first step in this process is establishing streamlined ecosystem categories and associated extent accounts (see Appendix 4 for ecosystem categorization in an OAF). Achieving multiple group and organization cohesion is a challenge in this process, but not unsurmountable. The first part of this work is establishing where those misalignments are present (see Figure 2.10) and rectifying any discrepancies based on sound ecosystem assessment strategies. Engagement with SANBI and the MSP working group in Alga Bay is ongoing and issues like these are being addressed.

Figure 2.9 Ecosystem accounts and how they relate to one another, <u>https://seea.un.org/ecosystem-accounting</u>.

Ecosystem_Primary	BroadEcosystemGroup	TypeExtent_km	Totals.km
Agulhas Mixed Shore	Rocky and mixed shore	188,08	Mixed Shore
Agulhas Stromatolite Mixed Shore	Rocky and mixed shore	8,36	426,48
Agulhas Exposed Rocky Shore	Rocky and mixed shore	89,52	
Agulhas Exposed Stromatolite Rocky Shore	Rocky and mixed shore	8,30	
Agulhas Sheltered Rocky Shore	Rocky and mixed shore	1,32	
Agulhas Dissipative Intermediate Sandy Shore	Sandy shore	116,45	
Agulhas Intermediate Sandy Shore	Sandy shore	14,45	
Eastern Agulhas Bay	Вау	1631,19	Bay 1631,19
Agulhas Island	Island	6,78	Island 6,78
Agulhas Inner Shelf Mosaic	Shallow rocky shelf	1853,57	Shallow Shelf
Agulhas Sandy Inner Shelf	Shallow soft shelf	521,55	2375,12
Agulhas Mid Shelf Reef	Deep rocky shelf	51,89	Deep Shelf
Agulhas Sandy Mid Shelf	Deep soft shelf	20233,09	38446,83
Agulhas Sandy Outer Shelf	Deep soft shelf	7058,51	
Eastern Agulhas Outer Shelf Mosaic	Deep rocky shelf	25966,23	

Size of ecosystems							
Ecosystems							
Classification used in study:	On-shore	Coastal system (0-50m depth)	Offshore (deep sea/open ocean – 50m+ depth)	Marine islands	Coral reefs/wreckages		
2018 NBA Synthesis Report classification	Sandy shore & rocky and mixed shore	Shallow soft shelf & shallow rocky shelf	Deep soft shelf & deep rocky shelf	Island	Kelp forest & shallow reef		
Island Proximity				3,560			
Reefs					45,925		
Agulhas Bays East		101,001					
Agulhas Mixed Shore	1,374						
Agulhas Sandy mid- self			136,209				
Total (ha)	4,980	124,626	264,844	3,863	45,989		

Figure 2.10 Draft tables exemplifying ecosystem extent accounts from the OAF and the MSP Asset Research group. Alignment of ecosystem classification extent between working groups is critical and work is underway in addressing these discrepancies.

3. General Methodology

After investigating various options as mentioned above an online tool modeled after Sayre et al., 2017 and ESRIs Ecological Marine Unit Explorer (EMU) was selected as the overarching tool design to achieve. This decision was made in part, based on desired interactive georeferenced aspects, the need to track change over time and the idea to continuously evolve the system and tool to include biophysical, environmental, economic and social data, and the realities of data availability and permissions for access and use, at least on a local scale. It was also taken into account that the compiled information on many and varied marine aspects would be provided by contributors in several formats that would have to be integrated into a straightforward, flexible and scalable structure within the geodatabase.

3.1 Data Collection and Curation

A combination of Microsoft excel, ESRI ArcGISPro and Python were used to collect, create and build the geodatabase and map application. The geographic projection used for this project is the World Geodetic System of 1984 (WGS84) which uses the WGS 84 ellipsoid. For all associated gridded data a 1 ha grid has been used. All metadata for each data type and source has been recorded according to the SAEON Open Data Portal (ODP) requirements (see Figure 3.1 for example).

File	e Hone Inset PageLayout Formulas Data Review View 🛛 Tell me what you want to do																						
	🖁 🔏 Cut	C	Calibri	* 11 * A	A = =	- ≫- - ™	'rap Text	Gene	ral 🔹 🛃	- III - I	Normal	Bad		Good	Neutral	Calculat	ion	^ *	💽 🖬 Σ	AutoSum * A	7		
Paste	E Eormat F	ainter	в <u>г</u> <u>ч</u> -	⊞ • 🖄 • .	<u>A</u> • = = =	€ →	lerge & Cente	er • 🖙 •	% , 🞲 🞊 Condition	al Format as	Check Cell	Expla	natory	Followed Hy	Hyperlink	Input		↓ Insert	Delete Format	ill - Soi	t & Find &		
*	Clipboard	G.	F	ont	ra	Alignment		ra i	Number 5	* lable* _			Sty	rles					Cells	Editing	er * Select *		^
HZ	•	: X	√ f×																				~
	L B		D	F		6	н		Г	×	1	м	N	0	Р	0	8	5	т	1	v	w	
1 *	Repository	Name	Title	Creators	Contributors	Publisher	Publicatio	ResourceT	Abstract	Keywords	BoundingB	StartDate	EndDate	DataDownloadLink	License	RightsURL	DOI	Alternateldent	RelatedIdentifier	MinimumV	er MaximumVe	rt VerticalExt	e SystemK
	SS	_DDWGS8	Aquirer type and sield	Mulin'Departmen	Environmental	Water and	2005	Dataset	Hydrogeological Map series, giving	Aquifer type,	East: 32.9,	1335	2000	http://media.dirisa.or g/inventory/archive/s	Attribution- ShareAlike 4.0	commons.org/li	10.1549 3/SARVA	E-GEOD-34814	IsDerivedFrom*DOI*10.	.5493, -:	10	50 m	#geoss, #sarva
		4	classification	Sanitation,	Network Distributor	Sankation			type (groundwater classification)	Map Series,	South: -34.8			patial/geoss/savid ge o_ddwgz84.zip	(CC BY-SA 4.0)	censes/by- pa/4.0/legalcod	.GEOSS. 100000						
			sield)	PRETORIA, 0001,	Office, PD Box				NGDB data used primarily.	quantity,						9	01						
2	2		Conductivity	2	0001, South Africa: South African	South African	2021	Dataset	Conductivity Temperature	GRA1. Conductivity		2019/02/05	2019/12/06									0 m	
			Temperature Depth (CTD)		Environmental Observation	Environmental Observation			Pressure (CTD) data for 2018 v as obtained from the South African	Temperature Pressure.CTD.													
			monthly snapshot of the		Network'Distributor' SAEON - National	Network (SAEON) sentinel site, Nelson			Environmental Observation Network (SAEON) sentinel site.	2018, SAEON sentinel ste.													
			2019 data for Algoa Bay		Office, PO Box 2600, Pretoria,	Mandela University (NMU), South			Nelson Mandela University (NMU), South African Institute for Aquatic	means, standard deviation and													
3	3		Sentinel Site Conductivity	?	0001. South Africa: South African	African Institute for South African	2021	Dataset	Biodiversity (SAIAB), and Fihodes Conductivity Temperature	standard error. Conductivity		2019/02/05	2019/12/08							-	70	0 m	
			Temperature Depth (CTD)		Environmental Observation	Environmental Observation			Pressure (CTD) data for 2019 v as obtained from the South African	Temperature Pressure, CTD,													
			monthly snapshot of the		Network Distributor SAEON - National	Network (SAEON) sentinel ske, Nelson			Environmental Observation Network (SAEON) sentinel site,	2019, SAEON sentinel site,													
			2019 data for Algoa Bay		Office, PO Box 2600, Pretoria,	Mandela University (NMU), South			Nelson Mandela University (NMU), South African Institute for Aquatic	means, standard deviation and													
4	4		Sentinel Site Chl-a (ugil) - 1	?	0001. South Africa South African	African Institute for Biochem?	2021	Dataset	Biodiversity (SAIAB), and Fihodes Chi-a (ug/1) 2018 data was	standard error. CH-a, 2018,		2018/02/20	2018/12/09								50	0 m	
			snapshot of the		Observation				(ugil) - 1wavelength data vere	site, means,													
5			data		SAEON - National				used to calculate the means, standard deviation and standard	standard deviation and													
	5		Chi-a (ugil) - 1 wavelength	\$	South African Environmental	Biochem?	2021	Dataset	Chl-a (ug/l) 2019 data v as obtained from Biochem. The Chl-a	Chi-a, 2018, SAEON sentinel		2019/02/05	2019/12/08								50	0 m	
			snapshot of the 2019 nutrient		Observation Network/Distributor				(ug/l) - 1 wavelength data were used to calculate the means,	site, means, standard													
6			data		SAEON - National Office, PO Box				standard deviation and standard error for the various discrete depth	deviation and standard error,													
7							<u> </u>	L											1				
•																							
																							_
		i Guidance	Datasets	+		1			1					1	1					1	1	1	•
Ready	□ □ - + - + 70%							_										E	— -	1			

Figure 3.1 Example of SAEON uLwazi Ocean Data Portal metadata archive and formatting requirements.

Once data was collected a process to join, merge and summarize the data was undertaken and the dataframe was formatted as a .csv file to be published to ESRI ArcGIS (Figure 3.2).

	5 0	• • •	6	i0% -	\$	00. %) 123 -	Arial	- 10) -	BI	5 /	<u></u>	•		Ξ - <u>+</u> -	$\left \frac{1}{1}\right\rangle$	- 17 - 0	⊕ ± ⊪	γ - Σ -	
1:1		• <i>fx</i>																			
	A	В		С	D	E	F	G	н	1	J		к	L	м	N		0	P Q	R	S
1		Conductivity	/ Tem	perature	Depth	Salinity	Oxygen	pH	Chlorophyll	Turbidity	Bottles	Julian	5	Scan	Pressure	DataFlag	date	Station	depth_class	DecDegS	DecDegE
2		0 4	8360	20.2958	0.0	29 35.11	47 11.6217	9.022	11.5549	100.6867		0	51.665987	8	30 0.	029 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
3		1 5	4252	20.4554	0.	15 39.81	87 5.9309	8.7	6.8658	254.5983		0	51.663663	1	27 0.	151 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
4		2 4	8353	20.2943	0.1	63 35.11	01 11.6294	9.02	11.2581	24.4495		0	51.665984	8	29 0.	164 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
5		3 4	8353	20.2929	0.2	64 35.11	19 11.6281	9.022	11.2047	2.0417		0	51.665981	8	28 0.	265 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
6		4 4	8427	20.4276	0.2	73 35.05	97 6.118	8.8	7.4693	291.1467		0	51.663666		28 0.	275 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
-		5 4	4095	20.3769	0.2	93 31.60	49 0.2009	8.933	8.6282	283.3463		0 :	51.003072		.0 0	295 0.00E+0	00	20180220 PELIE	RP1 0-2	-33.89616667	25.70227778
0		7 4	8427 9353	20.3952	0.2	37 35.06	00 0.120	0.001	8. 10 13 11. 4762	294.081		0	51.003009	0	29 0.	299 0.00E+0	0	20180220 PELIE	RP1 0-2 DD1 0.2	-33.89010007	25.70227778
10		0	9227	20.2813	0.3	34 34.04	01 6 161	9.021	0.0311	249 6152		0	51 662675		21 0	342 0.00E+0	0	20100220 FELTE	PP1 0.2	-33.99616667	25.70227779
11		9 4	4828	20 3594	0.4	07 32.20	58 6 2762	8 996	9.3027	256 9009		0	51 663678		32 0	409 0.00E+(00	20180220 PELTE	RP1 0-2	-33 89616667	25 70227778
12		10 4	8352	20.285	0.4	33 35.11	74 11.5839	9.017	11.5549	1.9181		0	51.665975	8	26 0	437 0.00E+(00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
13		11 4	8391	20.3216	0.4	34 35.11	89 11.6385	9.063	11.1604	2.005		0	51.664844	4	35 0.	437 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
14		12 4	8391	20.3221	0.4	59 35.1	18 11.6199	9.066	11.0292	1.9501		0	51.664847	4	36 0.	463 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
15		13 4	2224	20.3558	0.4	64 30.1	27 6.3766	9.017	9.3729	205.0904		0	51.663681		33 0.	468 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
16		14 4	8389	20.3213	0.4	99 35.11	76 11.6626	9.069	10.782	1.9272		0	51.664841	4	34 0.	503 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
17		15 4	2848	20.3541	0.5	26 30.62	48 6.3865	9.026	9.5453	143.6576		0	51.663683	:	34 (0.53 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
18		16 4	8357	20.2718	0.	54 35.13	23 11.5645	9.018	11.5152	1.9547		0	51.665972	8	25 0.	544 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
19		17 4	8392	20.3226	0.5	52 35.11	85 11.6201	9.068	10.8698	2.0096		0	51.66485	4	37 0.	556 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
20		18 4	8275	20.3535	0.5	89 34.99	74 6.2599	9.042	10.0359	103.4836		0	51.663686		35 0.	593 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
21		19 4	8390	20.3208	0.6	13 35.11	81 11.6817	9.069	10.5325	1.9867		0	51.664838	4	33 0.	617 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
22		20 4	8390	20.3527	0.6	27 35.09	21 6.4061	9.048	9.8238	/2.1035		0	51.663689		36 0.	631 0.00E+0	00	20180220 PELIE	RP1 0-2	-33.89616667	25.70227778
23		21 4	8400	20.3518	0.	03 35.10	05 6.7977	9.053	9.5941	49.6818		0 :	51.003092		s7 0.	0.35 0.00E+0	00	20180220 PELIE	RP1 0-2	-33.89616667	25.70227778
24		22 4	9441	20.3092	0.0	00 35.11 64 35.11	90 9.945	9.073	12.2309	2.1332		0	51.003927	1	10 0.	644 0.00E+0	0	20100220 PELIE	RF1 0-2 RP1 0-2	-33.89010007	25.10221118
26		24 4	9376	20.3701	0.6	4 35.0	81 7 3609	9.055	10 2205	35 1156		0	51 663605		13 0.	646 0.00E+0	0	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
27		25 4	8344	20.3521	0.6	45 35.13	19 11 5452	9.035	11 5549	1 9455		0	51 665969	8	24 0	649 0.00E+(00	20180220 PELTE	RP1 0-2	-33 89616667	25 70227778
28		26 4	8446	20.3753	0.6	47 35.11	89 9.9073	9.073	10.8125	1 9684		0	51 66399	1	40 0	652 0.00E+(00	20180220 PELTE	RP1 0-2	-33 89616667	25 70227778
29		27 4	8443	20.377	0.6	47 35.11	46 9.9456	9.076	11.9829	2.0829		0	51.663993	1	41 0.	652 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
30		28 4	8471	20.4013	0.6	74 35.11	75 8.8225	9.075	10.3914	1.8631		0	51.664106	1	30 0.	679 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
31		29 4	8469	20.4046	0.6	76 35.11	33 8.9209	9.076	10.4181	1.9364		0	51.664109	1	31 0.	681 0.00E+(00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
32		30 4	8398	20.3531	0.6	77 35.0	98 8.0018	9.058	10.6432	26.1295		0	51.663698		39 0.	682 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
33		31 4	8399	20.3314	0.6	77 35.11	72 11.6394	9.069	11.7487	2.0279		0	51.664502	3	17 0.	682 0.00E+0	00	20180220 PELTE	RP1 0-2	-33.89616667	25.70227778
34	1	32 4	R438	20 366	0.6	78 35	12 10 0522	9.076	11 0262	1 9638		0	51 663958	10	٥ oc	683 0.00E+0	00	20180220 PELTE	RP1 0-2	-33 89616667	25 70227778

Figure 3.2 Example of the Ocean Accounts dataframe format for integration into ESRI products.

3.2 Data Visualization

Dash (an interactive python framework for creating interactive web applications) was used for the visualization of biophysical variables.

The Dash app script below imports data, creates a list of variables to display, assigns the station names and associated dates over time and displays on the 'date slider', assigns a heading name for the app, defines the various interactions for the data and where to find associated data (e.g. drop down list for the stations (default PELTER Station 1), creates the time slider, creates the charting options, and the different variables to show in the chart (default temperature), essentially controlling the layout of the entire application. And finally, it defines how the various graphing outputs will appear (box and whisper plot or scatter plot), creates a filtered view of the .csv dataframe according to what was selected in the date slider or seasons (for example). The backend component of this work was provided by the SAEON uLwazi node.

Dash App Script:

#install jupyter-dash !pip install jupyter_dash

#add some additional packages

from jupyter_dash import JupyterDash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import pandas as pd import plotly.express as px from google.colab import drive drive.mount('/content/gdrive')

#import Data into a .csv

csv_path = '/content/gdrive/MyDrive/Colab Notebooks/dataframe.csv'
df=pd.read_csv(csv_path)

#list the variables we want to display
sensor_list = ['Conductivity', 'Temperature', 'Salinity', 'Oxygen', 'pH', 'Chlorophyll', 'Turbidity', 'Pressure']

#Get a list of the Stations in alphabetical order df = df.sort_values(by=['Station']) stations = df['Station'].unique()

#Get a list of the dates we want to show

df['date'] = df['date'].replace('201900809', '20190809')
df = df.sort_values(by = 'date')
df['date'] = pd.to_datetime(df.date, format='%Y%m%d')
dates = df['date'].unique()
date_array = [str(i) for i in dates]
dates = [i[:10] for i in date_array]
print(dates)
date_mark = {i : dates[i] for i in range(0, 22)}

app = JupyterDash(__name__)
app.layout = html.Div([
#Heading
html.H1("Hobo Data Visualisation App"),

#Subheading

html.H2("Dynamic Visualisation of variables"),

Dropdown for the Station to chart

html.Label([

```
"Station",
dcc.Dropdown(
id='stat-dropdown', clearable=False,
value='PELTERP1', options=[
{'label': st, 'value': st}
for st in stations
])
]),
```

#timeslider to analyse time series

html.Label([

```
"Date",
dcc.RangeSlider(
id = 'slider',
marks = date_mark,
min = 0,
max = 22,
value = [0,2])
```

]),

Chart

dcc.Graph(id='graph'),

```
# Dropdown for the variables to chart
```

```
html.Label([
    "Variable",
    dcc.Dropdown(
        id='var-dropdown', clearable=False,
        value='Temperature', options=[
            {'label': s, 'value': s}
            for s in sensor_list
        ])
```

]),

])

```
# Define callback to update graph
@app.callback(
    Output('graph', 'figure'),
    [Input("var-dropdown", "value"),
    Input("stat-dropdown", "value"),
    Input("slider", "value")
  ])
```

#define the function to update the graph based on the user selection
def update_figure(input1, input2, input3):
 #Filter the Data by station

```
data = df[(df.date > dates[input3[0]]) & (df.date < dates[input3[1]])]
#data = df.loc[df['Station'] ==input2]
#update the plot
fig = px.scatter(
    data.loc[data['Station'] ==input2],
    x="Depth",
    y=input1,
    color = input1,
    color_continuous_scale= "Plasma",
    title= input2
    #notched = True</pre>
```

```
)
return fig
```

Run app and display result inline in the notebook
app.run_server(mode='inline')

3.3 User Interface Development

Here, goals are to learn how to build a Map Atlas using the ESRI Experience Builder and Map Atlas application then integrate the data visualizations created in the Dash app into a pop up embedded in the Experience Builder App. ArcGIS Experience Builder allows the ability to transform data into web apps without writing code, build map centric or non-map centric apps and display them on a fixed or scrolling screen, on single or multiple pages, perform a drag-and-drop operation to choose the tools you need from a set of widgets, design templates, and interact with 2D and 3D content—all within one app. With ArcGIS Experience Builder, web apps are relatively easy to create and run seamlessly on PCs, laptops or mobile devices. This phase of the project will continue to evolve as content is added over the course of 2022.

4. Results

An alpha version of an online interactive mapping platform modeled after the Sayre et al. 2017 approach and the ESRI based Ecological Marine Unit Explorer was created.

At present, physical and some biological data from 2018 to 2019 has been incorporated and the full suite of historic datasets and associated stations will be added in December 2021 (Figure 4.1). The interactive map window on the left is linked to the following viewer windows on the right, from top to bottom, the Sentinel site station name, the date slider where the users choice of dates can be displayed, the season selector (including summer Dec, Jan, Feb; spring Mar, Apr, May; autumn Sep, Oct, Nov; and winter Jun, Jul, Aug), the oceanographic and biological variable selector (including temperature, salinity, conductivity, pressure, oxygen, pH, chlorophyll-*a* and turbidity), the chart selector (scatter plot for continuous data or box and whisper plot for up to 5 different depth categories), and finally a button to download any of the relevant data desired. The charting window continually updates as the user makes their viewing selection criteria. This application is not publically available yet, but will be in 2022 and importantly can be migrated to other platforms.

The second phase of this online tool development is to embed this application (Figure 4.1) in an ESRI based web portal where a series of interactive map pages or a 'map atlas' can be viewed as well as associated charts, tables, descriptive text, and metadata (Figure 4.2 a and b). A test Dash application has been embedded in what's termed an ESRI 'experience'. 'Experience' here means that it's an online interactive platform. As mentioned above in addition to the user being able to navigate within the Dash app which allows users to view and access a suite of oceanographic and biological parameters in a continuous data format, there will also be static maps, graphs, charts and information relevant to the specific target accounts that make up the Ocean Accounts framework.

Figure 4.1 Interactive test application for data visualization in Algoa Bay. The app includes monthly data spanning 2018 to 2019, across four seasonal timeframes, eight different variables, and two different charting types for each Pelagic Ecosystem Station in the bay.

Figure 4.2 a. The ESRI hosted Experience Builder app includes web pages and an embedded version of the interactive test application for data visualization in Algoa Bay and can be custom designed to include as much or as little data, maps and information as is required.

Figure 4.3 b. The ESRI hosted Experience Builder app includes web pages and an embedded version of the interactive test application for data visualization in Algoa Bay and can be custom designed to include as much or as little data, maps and information as is required.

The inclusion of various satellite products and modelled data in Algoa Bay as layers in the ESRI GIS platform were also introduced. Work from Egagasini Node's SOMISANA team into the ESRI Experience application by way of netcdf files has been initiated. The SST product used is called OSTIA, it is a reprocessed 5km SST product

(SST_GLO_SST_L4_REP_OBSERVATIONS_010_011) and comes from Copernicus, a European Union earth observation programme that utilizes a suite of satellites to acquire freely accessible data. The marine based information that can be accessed here is known as CMEMS (Copernicus Marine Environment Monitoring Service). The Chl-*a* product which can be used in unison with in situ chl-*a* as a proxy for biological productivity and water quality is an example of how environmental condition will be monitored over time (Figure 4.4). Refinement of these products is still underway. The link to CMEMS data is as follows: <u>https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_GL</u> <u>O_SST_L4_REP_OBSERVATIONS_010_011</u>

Figure 4.4A .netcdf file depicted as a raster layer in ArcGIS Pro of ChI-a monthly mean over a one year period, 2018-2019.<u>https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OB</u>

Finally, a layer depicting modelled winter (June, July, August) sea surface temperature anomaly over a 10 year period (2009 – 2019) in Algoa Bay was created and more work needs to be dedicated to giving an accurate depiction of this information in GIS (Figure 4.5). NetCDF (network Common Data Form) is a file format for storing multidimensional scientific data (variables) such as temperature, pressure, wind speed, and direction. Each of these variables can be displayed through a dimension (such as time) in ArcGIS by making a layer or table view from the netCDF file. The user should be able to specify a time dimension and display the associated layer representing the measurements recorded in that time (e.g. sea temperature anomaly in 2009). However, extracting this type of information proved dubious and refinement is ongoing.

Figure 4.5 Modeled point data of winter SST anomaly over a 10 year period, 2009-2019, in Algoa Bay was interpolated using a krigging method in ArcGISPro.

Within an OAF concept, products like these can aid measuring change over time within the environment of focus. Additionally, elaborate simulations can be created based on local oceanographic conditions that would support risk and response scenarios and associated decisions in planning and management. An example of this is the OCIMS test platform for high resolution model forecasts for Algoa Bay and can be accessed here <u>link</u> where a hypothetical oil spill model simulation can be viewed.

5. Conclusions

The Ocean Accounts Framework is one approach towards promoting regional harmonization of monitoring methods, used to assess marine environmental health and to obtain complete and long-term datasets from multiple ecosystem components, ranging from microbes to large marine mammals to ocean biophysics, in one accessible space. The introduction of the alpha version of this online platform can be viewed as an exemplary attempt to initiating a multidisciplinary step towards improved ecosystem approach style management. Making a shift from structural, site specific approaches to a functional, whole sea-system monitoring program is critical, and although challenging and tedious at the start, will promote and advance sustainable development goals and the implementation of Ocean Accounts for Algoa Bay and South Africa at large.

The first iteration of this tool is largely focused towards scientists and researchers with the idea to expand on the intended audience to decision makers once the ESRI Experience application is fully operational. The addition of MSP based interactive maps, pages dedicated to the various types of accounts, environmental condition status, socio-economic and risk account data and information such as policy documents in one user space will provide a meaningful and user friendly 'one stop shop' for management and policy makers alike. The next version of this application will be advanced and released in 2022.

6. References

Chafiq, T., Octavian, G., Jarar Oulidi, H., Ferki, A., Alexandru, R., and Saadane, A. 2013. Spatial data infrastructure. Benefits and strategy. Scientific Annals of Alexandru Ioan Cuza University Of Iaşi, Vol. LIX, No.1, S. II c.

Division for Ocean Affairs and Laws of the Sea (DOALOS), 2016. Chapter 33. <u>https://www.un.org/Depts/los/global_reporting/WOA_RegProcess.htm</u>

ESRI. 2010. Spatial Data Infrastructure. A Collaborative Network. Redlands, ESRI.

European Commission. 2016. MSP Data Study: Evaluation of data and knowledge gaps to implement MSP. Luxembourg, Publications Office of the European Union.

Findlay, K., Obura, D., Milligan, B., 2020. Ocean accounts: A seachange approach in ocean decisionmaking. Policy Brief 199

Global Ocean Accounts Partnership (GOAP). 2020. Technical Guidance on Ocean Accounting for Sustainable Development (United Nations, 1st edition, 2019).

Hu, Y., and Li, W. 2017. Spatial Data Infrastructures. J. P. Wilson (ed.) The Geographic Information Science & Technology Body of Knowledge.doi:http://dx.doi.org/10.22224/gistbok/2017.2.1

Interdepartmental Directors' Consultative Committee North Sea (Interdepartmental Directeurenoverleg Noordzee - IDON). 2015. Integrated Management Plan for the North Sea.

IOC-UNESCO. 2009. Marine Spatial Planning: A Step-by-Step Approach toward Ecosystem-Based Management. Paris: UNESCO.

Jafari, S. M. 2014. The Analysis of Open Source Software and Data for Establishment of GIS Services Throughout the Network in a Mapping Organization at National or International Level. Ph.D. thesis, Politecnico di Torino, IT.

Sayre, Roger G.; Wright, Dawn J.; Breyer, Sean P.; Butler, Kevin A.; Van Graafeiland, Keith; Costello, Mark J.; Harris, Peter T.; Goodin, Kathleen L.; Guinotte, John M.; Basher, Zeenatul; Kavanaugh, Maria T.; Halpin, Patrick N.; Monaco, Mark E.; Cressie, Noel A.; Aniello, Peter; Frye, Charles E.; and Stephens, Drew, "A threedimensional mapping of the ocean based on environmental data" . 2017. Faculty of Engineering and Information Sciences - Papers: Part B. 114. https://ro.uow.edu.au/eispapers1/114

Sink KJ, van der Bank MG, Majiedt PA, Harris LR, Atkinson LJ, Kirkman SP, Karenyi N (eds). 2019. South African National Biodiversity Assessment 2018 Technical Report Volume 4: Marine Realm. South African National Biodiversity Institute, Pretoria. South Africa. http://hdl.handle.net/20.500.12143/6372

Turton, AR, Hattingh, J, Maree, GA, Roux DJ, Claassen M, Strydom WF. 2007. 'Governance as a Trialogue: Government-Society-Science in Transition', Water Resources Development and Management Series, ISBN-10 3-540-46265-1, Springer-Verlag Berlin Heidelberg.

7. Annex 1: List of Data To Be Compiled

Table 3. Types and themes of data to be collected.

Ecological data	Physical data	BioGeoChem Data	Human / socio-economic data	Others
Coastal Ecosystems	Bathymetry	Productivity/Chl-a	Fisheries	Administrative Boundaries
Marine Ecosystems	Temperature	Nutrients (Phosphate, Silicate, Nitrate)	Aquaculture	Population Distribution
Estuarine Ecosystems	Depth Zones	Dissolved oxygen	Tourism	Maritime/marine related policies/acts/laws
Areas of High Biodiversity	Waves		Recreation	
Areas of High Endemism	Wind		Maritime Transportation	
Areas of High Productivity	Turbidity		Ports	
Aggregation Sites	Salinity		Offshore Oil & Gas	
Spawning / Breeding Areas	Ocean Acidification/pH		Offshore Renewable Energy	
Feeding / Foraging Areas	Flood Risk		Telecommunication Cables	
Nesting Areas	Seismic Threat		Mining concession areas	
Nursery Areas	Sediment type		Sand & Gravel Mining	
Migration Routes / Migration Stopover	Benthic habitat type		Dredged disposal site	
Environmental Health	Tide		Seabed Mining	
Ecozones	Current Direction		Desalination Plants	
Eco Regions	Current Velocity		Carbon Sequestration Sites	
			Military Areas	
			Maritime and Underwater Cultural Heritage	
			Scientific Research	
			Marine Protected Areas	
			EBSAs	
			CBAs	
			Effluent Outfall Pipes/Areas	

8. Annex 2: Potential data sources and providers

A Spatial Data Infrastructure (SDI) is a framework of technologies, policies and institutional arrangements that combined enable the creation, exchange and use of geospatial data and related information across an information-sharing community. SDI extends a Geographic Information System (GIS), ensuring geospatial data and standards are used to create official datasets linked to policies (ESRI, 2010), which can aid administration of current policies, as well as the development of new policies.

SDIs are particularly useful in the context of todays 'big data', when large volumes of geospatial data and web services are readily available (Hu and Li, 2017). A successful SDI interconnects leadership, people, computer networking, publishing and access software, data, policies, and metadata into a framework that helps put the appropriate tools and rules in place to maintain data and turn them into useful information products to support operations and decision-making (Jafari, 2014, IOC Technical Series, 161, 2021). Building an SDI not only sets a precedent to allow free access to spatial data for governmental authorities, stakeholders and citizens, but also provides many benefits to it's users (Table 4) (Chafiq et al., 2013, IOC Technical Series, 161, 2021).

Financial	Strategic	Social	Users
Reduces the costs of spatial data collection, avoiding duplication	Improves data authorship	Improves working relationships between stakeholders and public administrators	Improves access to data
Reduces the costs of data access and sharing	Improves data privacy	Improves relationships between citizens and public administrators	Facilitates data use
Reduces the costs of data maintenance	Improves partnerships through efficient data sharing agreements	Improves understanding about relevance of spatial data	Improves services to users
Reduces the time of integration of data and interoperability	Improves data quality	Improves understanding about the issues related to the data	Improves users' responsiveness
Reduces the risks and the costs of development of new applications	Improves documentation of metadata	Reduces redundancy in available applications	Improves data standards and expectations
Refocuses funding streams	Improves transparency about data collection, processing and updating		Attracts participation

Table 4. Benefits of Spatial Data Infrastructures (Adapted from Chafiq et al., 2013 and IOC Technical Series, 161, 2021).

The aim of this annex is to review the current SDIs available at different levels (global and regional) in order to identify potential data sources and providers that could contribute to the development of the OAF pilot area in Algoa Bay, South Africa, as well as contribute to a regional process going forward. A systematic analysis of global and regional SDIs was carried out to identify functional status and relevance to the OAF process in the pilot project based on an adaptation of the European "MSP Data Study" (European Commission, 2016).

The criteria considered are:

A. Type of infrastructure (SDI Type)

- Data Catalogue: a data list, its availability and how to source
- Data Portal: online direct access to datasets
- Data Viewer: service to display spatial data
- Information Service: service which aggregates data into information product (e.g., factsheets)
- Decision Support Tool: method or specialised tool to support further analysis and interpretation

B. Scale

- Global
- Regional
- C. Goal
 - Describe the marine area: state of the environment and distribution of maritime activities
 - Describe interactions in the marine area: pressures and impacts of maritime activities
 - Integrated management: integrated assessments, including monitoring and evaluation
- D. Scope
 - Marine
 - Terrestrial

E. Data type

- Ecological
- Physical
- Socio–economic

Review of SDIs with relevance to Algoa Bay

A total of 19 SDIs that could be useful for OAF purposes were identified (Table 5).

Table 5. Overview of Spatial Data Infrastructures identified with potential relevance to the OAF development process in South Africa and for this case study within Algoa Bay.

Name	URL	SDI type	Scale	Goal	Scope	Data type
The Algoa Bay Project	http://www.algo abaydata.com/	Data Portal, Data Viewer, Information Service	Regional	Describe the marine area and uses	Marine	Ecological, Socio- economic
South African National Biodiversity Institute	http://bgis.sanb i.org/	Data Portal, Data Viewer, Information Service	Regional	Describe the marine area	Marine & Terrestrial	Ecological
The Marine Information Management System	https://data.oce an.gov.za/about /	Data Information Service	Regional	Describe the marine area and uses	Marine	Physical
The National Oceans and Coastal Information Management System	http://ocimstest .ocean.gov.za/al oga_bay_model/	Data Viewer, Information Service	Regional	Describe the marine area	Marine	Physical
Ecologically or Biologically Significant Marine Areas	https://cmr.ma ndela.ac.za/Res earch- Projects/EBSA- Portal/South- Africa	Data Viewer, Information Service	Regional	Describe the marine area	Marine	Ecological
Gov.UK	https://explore- marine- plans.marineser vices.org.uk/	Data Viewer, Information Service	Regional (UK)	Describe the marine area and uses	Marine	Ecological, Physical, Socio- economic
Symphony for MSP in Sweden	https://www.havo chvatten.se/en/eu -and- international/mari ne-spatial- planning/sympho	Data Viewer, Information Service	Regional (Sweden)	Describe the marine area	Marine	Ecological, Physical, Socio- economic

	nya-tool-for- ecosystem-based- marine-spatial- planning.html					
ESRIs Ecological Marine Unit Explorer	https://livingatl as.arcgis.com/e mu	Data Viewer, Information Service	Global	Describe the marine area	Marine	Physical
Copernicus Marine Service	https://myocea n.marine.copern icus.eu/data	Data Portal, Data Viewer	Global	Describe the marine area	Marine	Physical
Ecologically or Biologically Significant Marine Areas	https://www.cb d.int/ebsa/	Data Portal, Data Viewer, Information Service	Global	Describe the marine area	Marine	Ecological
Ocean Data Viewer	<u>https://data.une</u> p-wcmc.org/	Data Portal, Data Viewer, Information Service	Global	Describe the marine area	Marine	Ecological
The General Bathymetric Chart of the Oceans	https://www.ge bco.net/data_an d_products/grid ded_bathymetry _data/	Data Portal, Data Viewer	Global	Describe the marine area	Marine	Physical
Marine Important Bird Areas (IBA) e- atlas	https://maps.bi rdlife.org/marin eIBAs/	Data Viewer, Information Service	Global	Describe the marine area	Marine	Ecological
Ramsar	https://rsis.ram sar.org/	Data Viewer, Information Service	Global	Describe the marine area	Marine & Terrestrial	Ecological
Submarine Cable Map	https://www.su bmarinecablema p.com/	Data Catalogue, Data Viewer	Global	Describe the marine area	Marine	Socio- economic
Information Integration System for Marine	https://instaar.c olorado.edu/~je nkinsc/dbseabe d/	Data Portal, Data Viewer	Global	Describe the marine area	Marine	Physical

Substrates (dbSEABED)						
Ocean Color Web	https://oceanco lor.gsfc.nasa.go v/	Data Portal, Data Viewer	Global	Describe the marine area	Marine	Ecological
IW:LEARN Spatial Lab	http://geonode. iwlearn.org/	Data Portal, Data Viewer	Global	Describe the marine area	Marine	Physical
Ocean Tool for PUblic Understanding and Science, University of Oxford	https://octopus.z oo.ox.ac.uk/	Data Portal, Data Viewer, Information Service	Global	Describe the marine area	Marine	Ecological, Physical, Socio- economic

9. Annex 3: Algoa Bay data catalogue to date

Table 6. Ocean Accounts Framework related data acquisition for Work Programme 2, 2021.

Dataset	Contact/Owner	Acquisition								
		Status			S					
				ly?	ysi					IS?
				ead	nal					∆tla
			qy?	Ē	A I	uo				jg (
			lea	00	ona	ers	DP		SRI	<u>v</u> ir
			n R	to	Ĭ	٩ ٩	0	nk	Ш О	-
			Itio	uo	adc	ible	q q	Ľ	ŭ q	ц с
			lisa	cati	of	suc	she	lati	she	she
			sua	blid	þe	spa	bli	etad	bli	bli
		· · ·	́	Pu	È	Re	Pu	ž	Pu	Pu
Sea Temperature	SAEON Tommy Bornman or	Acquired	Y							
Salinity	SAEON Tommy Bornman or	Acquired	Y							
	Shaun Deyzel									
Dissolved Oxygen	SAEON Tommy Bornman or	Acquired	Y							
nH	Shaun Deyzel	Acquired	v							
	Shaun Deyzel	Acquireu	1							
Chl-a	SAEON Tommy Bornman or	Acquired	Y							
* 110	Shaun Deyzel		V							
Turbialty	SAEON TOMMY Bornman or Shaun Devzel	Acquired	Y							
Nutirents (Phosphate)	SAEON Tommy Bornman or	Acquired	Ν							
	Shaun Deyzel	·								
Nutrients (Silicate)	SAEON Tommy Bornman or	Acquired	Ν							
Nutrients (Nitrate)	SAFON Tommy Bornman or	Acquired	N							
	Shaun Deyzel	Acquired								
Currents	SAEON Tommy Bornman or	Acquired	Ν							
Mayor	Shaun Deyzel	Acquirad	NI							
waves	Shaun Devzel	Acquireu	IN							
Bottom Temperature	SAEON Tommy Bornman or	Acquired	Y							
	Shaun Deyzel									
Sentinel Site Biological and Physical	SAEON Tommy Bornman or	Acquired	Y							
Algoa Bay 1 hectare grid	CPUT Ken Findlay	Acquired	Y							
Algoa Bay Study Area	SAEON Tommy Bornman	Acquired	Y							
SANBI 2018 lavers	SANBI Kerry Sink, Prideel	Acquired								
	Majiedt	Acquired								
Ecosytem Types 2018	SANBI Kerry Sink, Prideel	Acquired	Y							
Ponthic and coastal habitat Types	Majiedt SANRI Korry Sink, Pridool	Acquired	v							
Sentine and coastal habitat Types	Majiedt	Acquired								
Pelagic Threat Status	SANBI Kerry Sink, Prideel	Acquired	Y							
	Majiedt	A 1	V							
Pelagic Protection	SANBI KERRY SINK, PRIDEEL	Acquired	Y							
EcoRegions and EcoZones	SANBI Kerry Sink, Prideel	Acquired	Y							
	Majiedt									

Benthic and Coastal Condition	SANBI Kerry Sink, Prideel Majiedt	Verbally Approved	Y
Combined Pressures	SANBI Kerry Sink, Prideel Majiedt	Verbally Approved	Y
Coastline	SANBI Kerry Sink, Prideel Majiedt	Acquired	Y
Algoa Bay Project layers	ABP NMU Hanah Truter, Victoria Goddall	Acquired	
Bathymetry 10 m contours	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
SAHRA Terrestrial Middens	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
SAHRA Terrestrial Heritage Sites	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Marine Heritage Sites	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Subsistence Fishing Intensity	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Squid Spawning Areas	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Shark distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Top Predator distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Algoa Bay Priority Conservation Areas	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Reef Distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Recreational Activities	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Recreational Spearfishing	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Rec SkiBoat Fishing Intensity	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Rec Shore Fishing Intensity	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Planning Units for Systematic Conservation Plan	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Linefish distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Kayak fishing areas	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
EBSAs	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Algoa Bay Dive Sites	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Commercial Shark Longline Fishing	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Commercial Linefishing Effort	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Commercial Inshore Trawling	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Commercial Squid Fishing	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Coastal Birds (Terns) Distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
South African Dive Sites	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Cetacean Sitings	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y
Bird Abundance and Richness	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y

Algoa Bay Islands	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y			
Abelone Reefs	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y			
Fish Distribution	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y			
SAWS weather stations	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y			
Kelp harvesting intensity	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Ν			
Shipping Lanes Mariculture Anchors	ABP NMU Hanah Truter, Victoria Goddall	Acquired	Y			
Wind	SAWS	Needed	Ν			
Tides	SA Hydrographers Office	Needed	Ν			
Estuarine habitat types	SAIAB, NMU Taryn Ridin	Acquired	Y			
Estuarine functional zone (5 m contour)	SAIAB, NMU Taryn Ridin	Acquired	Y			
Estuarine physical data	NMU SAIAB Janine Parker- Nance	Needed	N			
Ecosystem Services Valuation	Asset Research, James Lignaut	Acquired	N			
Socio-Economic Data	Industry/Muncipality/WPs	Desired	Ν			
Mining Concession Areas	Private or DMR	Desired	Ν			
Mining Application Areas	Private or DMR	Desired	Ν			
Estuarine carbon sequestration data	NMU SAIAB Janine Parker- Nance	Desired	Ν			
Effluent outfalls	Muncipality	Desired	Ν			
Telecommunication cables	Muncipality	Desired	Ν			
Aquaculture concession areas	Private	Desired	Ν			

10. Annex 4: Ocean Accounts Ecosystem Types

Ecosystem Type: Open Ocean

Category	Statistic		
Ocean Assets			
Condition	Overall Condition Statistics		
	Megafauna Abundance/Diversity		
Biodiversity	Fish Diversity		
	Plankton Abundance (Phyto + Zoo)		
	Chlorophyll- <i>a</i> concentration		
Ecosystem Fitness	Biological Pump Rate		
	Turbidity/ Light Availability		
	Thermocline		
	Pycnocline		
	Vertical Profile: Oxygen		
Biogeochemical Cycling	Vertical Profile: Nitrate, Phosphate, Silicate		
	Vertical Profile: pH		
	Vertical Profile: DIC		
	Sea Surface Temperature		
Physiochemical Quality	Sea Surface Salinity		
	Mean Sea Level		
	Plankton Abundance		
	Chlorophyll-a Concentration		
Greenhouse Gas Retention	Dissolved Inorganic Carbon Profile		
	Average Sea State		
Stock	Overall Stock Statistics		
Ecosystem Extent	Total area defined as open ocean (satellite)		
	Gross pelagic fish catch		
Stock of Natural Aquatic Resources (Vertebrates)	Gross piscivorous fish catch		
	Gross prawn/shrimp catch		
Stock of Natural Aquatic Resources (Invertebrates)	Gross squid catch		
	Gross chokka catch		
Stock of Cultivated Aquatic Resources (Vertebrates)	Gross pelagic fish grown		
Stack of Cultivated Agustic Decourses (Invertebrates)	Gross shelffish grown		
STOCK OF Cultivated Aquatic Resources (Invertebrates)	Gross prawn/shrimp grown		
Stock of Alistic Descurren	Oil/Petroleum Harvested		
	Energy Generated		
Ocean Services (Flows to the economy)			
Regulating	Conditions affecting flow of services		
Greenhouse Gas Sequestration	Average Sea State		

Ecosystem Type: Open Ocean

Category	Statistic
	Chlorophyll a (Satellite)
	SST (Satellite)
	Mean Sea Level
Coastal Protection	Hydrodynamic Barrier Area
Erosion Control	Water Column Sedimentation Rates
Water Durification	Plankton Abundance
Water Purilication	Chlorophyll a Concentration
	Biological Pump Rate
Nutrient Cycling	Chlorophyll a Concentration (satellite)
	Dissolved Inorganic Carbon Profile
	Water Column PON
Waste Remediation	Water Column POC
Waste Remediation	Plastic Pollutant Load
	Terrestrial Runoff Rate
	Fertilizer Concentrations
Pollutant Remediation	Microplastic Concentrations
	Large Plastic Concentrations
Provisioning	Conditions affecting flow of services/economic values
Maintenance of Fisheries	Fish Catch and Value
	Catch Per Unit Effort
Cultivated Resources Extracted	Value of Cultivated Vertebrates
	Value of Cultivated Invertebrates
Raw Materials Extracted	Energy Generated
	Oil/Petroleum Extracted
Cultural	Service levels and values
	Accessible Area for Recreation
Tourism/Recreation	Water Quality
Tourishi, her cation	Tourism Generated Income
	Recreation Generated Income
Education/Research	Net Expense on Research
	Net Expense on Education
Religious/Spiritual/Indigenous	Cultural Heritage Area
Ocean Governance Activities, status, expenditures, and value sta	
Regulation	License Fees/Taxes
	Taxes on Cultivated Resources
	Taxes on Nautral Resources
Enforcement	Permit Income
	Penalties/Fines
Restoration/Conservation	Area Conserved (no take)

Ecosystem Type: Open Ocean

Category	Statistic		
	Area Conserved (recreational take only)		
	Biomass Restocked (vertebrates)		
	Biomass Restocked (invertebrates)		
Mitigation	Length of Engineered Coastal Barriers		
	Area of Hydrodynamic Barriers		
Gross value added by sector	Gross value added of all Ocean Services by sector		
Expenditure	Expenditures on environmental protection and maintenance		

Ecosystem Type: Kelp Forest

Category	Statistic		
Ocean Assets			
Condition	Overall Condition Statistics		
Biodiversity	Predator Reef Fish Abundance		
	Kelp Canopy Biomass (Landsat)		
	Benthic Macroinvertebrate Diversity		
	Availability of Drift Algae		
	Turf Algae Abundance		
Ecosystem Fitness	Urchin Grazing Intensity		
	Ratio of Invasive: Natural kelp species		
	Juvenile Kelp Recruitment Rate		
	Nitrate Concentration		
	Ammonium Concentration		
Diagooshomisal Cycling	Kelp Growth Rate		
Biogeochemical Cycling	Dissolved Oxygen Concentration		
	C13 Stable Isotopes		
	N15 Stable Isotopes		
	Sea Temperature		
Physiochemical Quality	Salinity		
	Light Availability		
	Light availability		
Greenhouse Gas Retention	Carbon Storage		
	Kelp Forest Biomass		
Stock	Overall Stock Statistics		
Example a Extend	Kelp Canopy Biomass (Landsat)		
Ecosystem Extent	Total Kelp Forest Area (Satellite)		
Stock of Natural Aquatic Resources (Vertebrates)	Fish Stocks		
	Urchin abundance		
Stock of Natural Aquatic Resources (Invertebrates)	Abalone abundance		

Ecosystem Type: Kelp Forest

Category	Statistic
	Lobster abundance
	Gross Piscivorous Fish Grown
Stock of Cultivated Aquatic Resources (Vertebrates)	Gross Planktivorous Fish Grown
	Gross Shellfish grown
Stock of Cultivated Aquatic Resources (Invertebrates)	Gross Macroalgae Available for Harvesting
Stock of Abiotic Resources	Alginate Available for Extraction
Ocean Services (Flows to the economy)	
Regulating	Conditions affecting flow of services
	Light Availability
Greenhouse Gas Sequestration	Kelp Biomass
	Kelp Canopy Cover
	Coastal geomorphology
	Kelp Canopy Density
Coastal Protection	Wave fetch
	Abundance of Urchins (and removed)
	Storm Frequency
	Localized Hydronamics
Erosion Control	Distance to Metropolitan Area
	Kelp Canopy Cover
Water Purification	Kelp/Macroalgae Abundance
water runneation	Light Availability
	Kelp Growth Rate
Nutrient Cycling	Standing Stock of Carbon
	Light availability
Waste Remediation	Ratio of Turf:Macroalgae
waste Remediation	Kelp Canopy Cover
	Fertilizer Concentrations
Pollutant Remediation	Fish Farm Runoff
	Effluent discharge volumes, content and concentrations??
Provisioning	Conditions affecting flow of services/economic values
Maintenance of Fisheries	Fish Catch and Value
	Catch Per Unit Effort
	Kelp Cover
Cultivated Resources Extracted	Value of Cultivated Vertebrates & Invertebrates
	Value of Cultivated Macroalgae
Raw Materials Extracted	Alginate Extracted
Cultural	Service levels and values
Tourism/Recreation	Kelp Persistence

Ecosystem Type: Kelp Forest

Category	Statistic
	Scuba Diving & Snorkeling Frequency
	Spatial coverage of Marine Protected Area
	Recreational Fisheries
	Net Expense on Research
	Net Expense on Education
Religious/Spiritual/Indigenous	Cultural Heritage Area
Ocean Governance	Activities, status, expenditures, and value statistics
Regulation	License Fees/Taxes
	Taxes on Cultivated Resources
	Taxes on Nautral Resources
Enforcement	Permit Income
Linotement	Penalties/Fines
	Transplant costs
Restoration/Conservation	Invasive Species Abundance
Restoration, conservation	Fish Biomass
	Number/Size of Marine Protected Areas
Mitigation	Area/Abundance of Urchins Removed
	Area Restored with Kelp
Gross value added by sector	Gross value added of all Ocean Services by sector
Expenditure	Expenditures on environmental protection and maintenance

Ecosystem Type: Coral Reef (Shallow Reef/Wreckages)

Category	Statistic	
Ocean Assets		
Condition	Overall Condition Statistics	
	Coral coverage (satellite data)	
Biodiversity	Hermatypic coral abundance (in-situ)	
	Hermatypic coral diversity (in-situ)	
Frankton Fitano	Production: Respiration Ratio	
	Net Accretion Rate	
Ecosystem Fitness	Total Alkalinity/DIC Slope	
	Reef water flow velocity	
	Nitrate concentration	
	Total Alkalinity	
D iscourse the sector of Constitution	Offshore:Inshore DIC ratio	
Biogeochemical Cycling	Aragonite Saturation State	
	Dissolved Oxygen	
	pH (total scale)	
Physiochemical Quality	Temperature	

Ecosystem Type: Coral Reef (Shallow Reef/Wreckages)

Category	Statistic
	Mean Sea Level
	Salinity
	Dissolved Inorganic Nutrient Concentration
Greenhouse Gas Retention	Carbon Dioxide Flux
	Coral coverage (satellite data)
	Sediment: Hard Coral Ratio
Stock	Overall Stock Statistics
Frequeter Extent	Coral coverage (satellite data)
Ecosystem Extent	Total reef area (satellite data)
	Stocks of Subsistence Fish
	Stocks of Recreational Fish
Stock of Natural Aquatic Resources (vertebrates)	Stocks of Commercial Fish
	Stockes of Ornamental Aquarium Fish
	Stocks of Echinoderms
Stock of Natural Aquatic Resources (Invertebrates,	Stocks of Gastropods
Algae, Plants)	Stocks of Ornamental Aquarium Coral for Export
	Stocks of Bivalves
	Gross Pelagic Fish Reared
Stock of Cultivated Aquatic Resources (vertebrates)	Gross Reef Fish Reared
	Gross Coral Cultured
Stock of Cultivated Aquatic Resources (Invertebrates)	Gross Algae Grown
Charle of Abiatic Descurres	Calcium Available for Harvest
Stock of Adiotic Resources	Minerals/Oils Available for Extraction
Ocean Services (Flows to the economy)	
Regulating	Conditions affecting flow of services
	Coastal geomorphology
Creanbaura Cas Convertuation	Sediment deposition rate
Greenhouse Gas sequestration	Light availability
	Coral Cover
	Coral Species
Coastal Protection	Reef length/distance
	Water depth
	Mean Wave Height
	Storm Frequency
	Sea Level Rise Rate
Erosion Control	Terrestrial Sediment Deposition Rate
	Reef slope to lagoon sediment deposition rate
Water Durification	Sediment Organic Carbon:Nitrogen Ratio
	Benthic coral:algae cover ratio

Ecosystem Type: Coral Reef (Shallow Reef/Wreckages)

Category	Statistic
	Benthic algae cover
Nutrient Cycling	Sediment cover
	Ratio of Nitrate:Ammonium
	Sediment Organic Carbon Content
	Sediment Organic Nitrogen Content
Waste Remediation	Plastic Pollutant Load
	Terrestrial Runoff Rate
	Fertilizer Concentrations
Pollutant Remediation	POC/PON Concentrations
	Ciguatera Presence
Provisioning	Conditions affecting flow of services/economic values
	Fish catch and value
Maintenance of Fisheries	Coral Cover
Cultiviste d Deserverse Estructural	Value of Cultivated Vertebrates
Cultivated Resources Extracted	Value of Cultivated Invertebrates
Deve Masteriale Entre start	Value of Coral Sand Extracted
Raw Materials Extracted	Value of Guano Extracted
Cultural	Service levels and values
	Swimmable Area (Lagoon Size)
Taurian (Daaraatian	Underwater Tourism
I ourism/Recreation	Nautical Tourism
	Surfing/Recreational Tourism
Education /Decouple	Net Expense on Research
Education/Research	Net Expense on Education
Religious/Spiritual/Indigenous	Cultural Heritage Area
Ocean Governance	Activities, status, expenditures, and value statistics
	License Fees/Taxes
Regulation	Taxes on Cultivated Resources
	Taxes on Nautral Resources
Enforcement	Permit Income
Emorcement	Penalties/Fines
Restoration/Conservation	Area Conserved (no take)
	Area Conserved (recreational take only)
	Biomass Restocked (vertebrates)
	Biomass Restocked (invertebrates)
	Length of Engineered Coastal Barriers
IVII.IB411011	Area Geoengineered
Gross value added by sector	Gross value added of all Ocean Services by sector
Expenditure	Expenditures on environmental protection and maintenance

Ecosystem Type: Sediment

Ocean AssetsOcean AssetsConditionOverall Condition StatisticsBiodiversityBenthic Microbial CommunityBiodiversityBenthic Microbial CommunityBiodiversityInfaunal Invertebrate DiversityEcosystem FitnessSulfate Reduction RateEcosystem FitnessSulfate Reduction RateBiogeochemical CyclingSulfate ConcentrationBiogeochemical CyclingParticulate/Dissolved Organic SitBiogeochemical CyclingDissolved Organic SitPhysiochemical QualityOtta Area StatisticPhysiochemical QualitySediment PermeabilityBiogeochemical QualityBenthic Production:Respiration RatioPhysiochemical QualitySediment PermeabilityGreenhouse Gas RetentionSediment PermeabilityStock of Natural Aquatic Resources (Invertebrate)Gross Shelthal fish stockStock of Natural Aquatic Resources (Invertebrate)Gross Shelthish stockStock of Altorate Aquatic Resources (Invertebrate)Gross Shelthish grownStock of Altorate Aquatic ResourcesGross Shelthish grownGross Shelthish grownGross Shelthish grown <t< th=""><th>Category</th><th>Statistic</th></t<>	Category	Statistic		
ConditionOverall Condition StatisticsBiodiversityBenthic Microbial CommunityBiodiversityBenthic Microbial CommunityBiodiversityInfaunal Invertebrate DiversityBiodiversityProduction: Respiration RatioSulfate Reduction RateSulfate Reduction RateSulfate Reduction RateSulfate Reduction RateSulfate ConcentrationNitrate ConcentrationBiogeochemical CyclingSediment Redox PotentialBiogeochemical CyclingSediment Redox PotentialPhysiochemical QualitySediment Redox PotentialPhysiochemical QualityBenthic Production: Respiration RatioGreenhouse Gas RetentionSediment PermeabilityGreenhouse Gas RetentionGross Sediment Sediment Sediment Sediment Sediment PermeabilityStock of Natural Aquatic Resources (Ivertebrates)Gross Shelthi fish stockStock of Natural Aquatic Resources (Ivertebrates)Gross Shelthi fish stockStock of Cultivated Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Cultivated Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Autural Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Cultivated Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Autural Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Autural Aquatic Resources (Ivertebrates)Gross Shelthish StockStock of Autural Aquatic Resources (Ivertebrates)Gross Shelthish StockGross Shelthish StockGross Shelthish StockGross Shelthish StockGross S	Ocean Assets			
Biodiversity Benthic Microbial Community Biodiversity Fish Diversity Infaunal Invertebrate Diversity Production: Respiration Ratio Sulfate Reduction Rate Sulfate Reduction Rate Sulfate Reduction Rate Sulfate Reduction Rate Sulfate Reduction Rate Nitrification Rate Biogeochemical Cycling Nitrate Concentration Biogeochemical Cycling Sediment Redox Potential Particulate/Dissolved Organic C:N Dissolved Organic C:N Dissolved Oxygen PH (total scale) Physiochemical Quality Salinity Mean Sea Level Benthic Production:Respiration Ratio Sediment Permeability Sediment Permeability Greenhouse Gas Retention Sediment Permeability Stock of Natural Aquatic Resources (Invertebrates) Gross Sheltfish Stock Stock of Natural Aquatic Resources (Invertebrates) Gross Sheltfish Stock Stock of Cultivated Aquatic Resources (Invertebrates) Gross Sheltfish Stock Stock of Cultivated Aquatic Resources (Invertebrates) Gross Sheltfish Stock Stock of Cultivated Aquatic Resources (Invertebrates) Gross Sheltfish grown Stock of Cultivated	Condition	Overall Condition Statistics		
BiodiversityFish DiversityInfaunal Invertebrate DiversityInfaunal Invertebrate DiversityEcosystem FitnessProduction: Respiration RatioEcosystem FitnessSulfate Reduction RateEcosystem FitnessSulfate Reduction RateBiogeochemical CyclingNitrate ConcentrationBiogeochemical CyclingSediment Redox PotentialPhysiochemical QualitySediment Redox PotentialPhysiochemical QualityBenthic Production:Respiration RatioSerient NetworkSediment PermeabilityGreenhouse Gas RetentionSediment PermeabilityStock of Natural Aquatic Resources (Vertebrates)Gross Shellfish StockStock of Natural Aquatic Resources (Vertebrates)Gross Sea Cucumber StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Abitic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Abitic Resources (Invertebrates)Gross Shellfish StockGross Shellfish StockGross Shellfish StockGross Shellfish grownGross Shellfish grownGross Shellfish grownGross Shellfish grownGross Shellfish grownGross Shellfish grownStock of Abitic Res		Benthic Microbial Community		
Infaunal Invertebrate DiversityInfaunal Invertebrate DiversityEcosystem FitnessProduction: Respiration RatioSulfate Reduction RateSulfate Reduction RateSediment Oxygen ProfileNitrite ConcentrationBiogeochemical CyclingSulfate ConcentrationBiogeochemical CyclingSediment Redox PotentialBiogeochemical QualitySediment Redox PotentialPhysiochemical QualityBenthic Production: Respiration RatioSediment PermeabilitySalinityGreenhouse Gas RetentionBenthic Production: Respiration RatioStock of Natural Aquatic Resources (Vertebrates)Gross Shellfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Ablotic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Ablotic Resources (Invertebrates)Gro	Biodiversity	Fish Diversity		
Production: Respiration RatioEcosystem FitnessSulfate Reduction RateSediment Oxygen ProfileNitrification RateNitrate ConcentrationSulfate ConcentrationSulfate ConcentrationSulfate ConcentrationBiogeochemical CyclingSediment Redox PotentialParticulate/Dissolved OxygenDissolved OxygenPhysiochemical QualitySalinityPhysiochemical QualityBenthic Production:Respiration RatioGreenhouse Gas RetentionSediment PermeabilityGreenhouse Gas RetentionSediment PermeabilityStock of Natural Aquatic Resources (Vertebrates)Gross Senthal fish stock Gross Shelfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Shelfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shelfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shelfish Grown Gross Planktivorous Fish GrownStock of Abiotic Resources (Invertebrates)Scan or Gravel? Available for HarvestChean Services (Flows to the economy)Conditions affecting flow of servicesGreenbouse Gas SequestrationStadiate of Sand geomerphologyGreenbouse Gas SequestrationGross Shelfish grownStock of Abiotic Resources (Invertebrates)Gross Shelfish grownGreen Services (Flows to the economy)Conditions affecting flow of servicesGreen Services (Flows to the economy)Seal and or Gravel? Available for HarvestGreen Services (Flows to the economy)Seal and or Gravel? Available for HarvestGreenbouse Gas SequestrationSeal and or Gravel? A		Infaunal Invertebrate Diversity		
Ecosystem FitnessSuifate Reduction RateEcosystem FitnessSediment Oxygen ProfileNitrification RateNitrification RateNitrate ConcentrationSuifate ConcentrationBiogeochemical CyclingSediment Redox PotentialBiogeochemical CyclingParticulate/Dissolved Organic C:NPhysiochemical QualityDissolved OxygenPhysiochemical QualitySalinityMan Sea LevelMean Sea LevelGreenhouse Gas RetentionBenthic Production:Respiration RatioLight Availability/TurbidityAverage Sea StateStock of Natural Aquatic Resources (Vertebrates)Gross Shelfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abitoic Resources (Invertebrates)Gross Shellfish grownGross Shellf		Production: Respiration Ratio		
Ecosystem FitnessSediment Oxygen ProfileNitrification RateNitrification RateNitrate ConcentrationSulfate ConcentrationSulfate ConcentrationSulfate ConcentrationBiogeochemical CyclingSediment Redox PotentialParticulate/Dissolved Organic C:NDissolved Organic C:NDissolved OxygenPH (total scale)Physiochemical QualitySalinityPhysiochemical QualitySalinityGreenhouse Gas RetentionBenthic Production:Respiration RatioGreenhouse Gas RetentionSediment PermeabilityLight Availability/TurbidityAverage Sea StateStock of Natural Aquatic Resources (Vertebrates)Gross Sheltfish StockStock of Natural Aquatic Resources (Ivertebrates)Gross Sheltfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Sheltfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Sheltfish grownStock of Abiotic Resources (Invertebrates)Gross Sheltfish grownGreen Stock (Flows to the economy)Conditions offecting flow of servicesGreenhouse Gas SequestrationStatinent denosition cate<	For each of Film and	Sulfate Reduction Rate		
Initiation RateBiogeochemical CyclingNitritate ConcentrationBiogeochemical CyclingSediment Redox PotentialParticulate/Dissolved Organic C:NDissolved Organic C:NPhysiochemical QualitySalinityPhysiochemical QualitySediment PermeabilityGreenhouse Gas RetentionLight Availability/TurbidityLight Availability/TurbidityLight Availability/TurbidityCosystem ExtentTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Invertebrates)Stock of Natural Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Abiotic Resources (Invertebrates)Stock of Abiotic ResourcesStock of Abiotic ResourcesCoastal geomorphologyGreenhouse Gas SemuestrationStock of Abiot	Ecosystem Fitness	Sediment Oxygen Profile		
Biogeochemical CyclingNitrate ConcentrationBiogeochemical CyclingSediment Redox PotentialParticulate/Dissolved OxygenDissolved OxygenpHi (total scale)Dissolved OxygenpH (total scale)Mater TemperaturePhysiochemical QualitySalinityMean Sea LevelMean Sea LevelGreenhouse Gas RetentionBenthic Production:Respiration RatioStock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stockStock of Natural Aquatic Resources (Vertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish stockStock of Cultivated Aquatic Resources (Invertebrates)Sand or Gravel? Available for HarvestStock of Cultivated Aquatic Resources (Invertebrates)Coastal geomorphologyStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Dental fish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Sand or Gravel? Available for HarvestCean Services (Flows to the economy)Coastal geomorphologyGreenhouse Gas SequestrationSociations affecting plow of servicesStock of Abiotic ResourcesSand or Gravel? Available for HarvestStock of Abiotic ResourcesSand or Gravel? Available for HarvestStock of Abiotic Resources <td></td> <td>Nitrification Rate</td>		Nitrification Rate		
Biogeochemical CyclingSulfate ConcentrationBiogeochemical CyclingSediment Redox PotentialParticulate/Dissolved Organic C:NDissolved OxygenpH (total scale)pH (total scale)Physiochemical QualityWater TemperatureSalinityMean Sea LevelMean Sea LevelGreenhouse Gas RetentionLight Availability/TurbidityLight Availability/TurbidityAverage Sea StateStock of Natural Aquatic Resources (Vertebrates)Stock of Natural Aquatic Resources (Vertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Abiotic Resources (Invertebrates)Stock of Abiotic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Stock of Cultivated Aquatic Resources (Invertebrates)Cross Shellfish grownGross Shellfish grownGross Shellfish grownGross Shellfish grownStock of Abiotic Resources (Invertebrates)Coastal genomerphologyGreenhouse (Gas SequentrationStock of Abiotic Resources (Invertebrates)Coastal genomerphologyGreenhouse (Gas SequentrationStock of Abiotic Resources (Invertebrates)Coastal genomerphologyGreenhouse (Gas SequentrationStock of Abiotic Resources (Invertebrates)Stock of Abiotic Resources (Invertebrates)Stock of Abiot		Nitrate Concentration		
Biogeochemical CyclingSediment Redox PotentialBiogeochemical CyclingParticulate/Dissolved Organic C:NPhysiochemical QualityDissolved OxygenPhysiochemical QualityWater TemperaturePhysiochemical QualitySalinityGreenhouse Gas RetentionBenthic Production:Respiration RatioGreenhouse Gas RetentionLight Availability/TurbidityGreenhouse Gas RetentionTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Vertebrates)Gross Shenthal fish stockStock of Natural Aquatic Resources (Vertebrates)Gross Sea Cucumber StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Sand or Gravel? Available for HarvestCross Shellfish grownGross Shellfish grownGross Shellfish grownGross Shellfish grownStock of Abiotic Resources (Invertebrates)Sand or Gravel? Available for HarvestDecem Services (Flows to the economy)Conditions affecting flow of servicesGreenhouse (Gas SequestrationCostal geomorphology		Sulfate Concentration		
Biogeochemical Lycing Particulate/Dissolved Organic C:N Dissolved Oxygen Dissolved Oxygen pH (total scale) pH (total scale) Water Temperature Salinity Physiochemical Quality Salinity Greenhouse Gas Retention Benthic Production:Respiration Ratio Sediment Permeability Light Availability/Turbidity Average Sea State Average Sea State Stock Overall Stock Stotistics Stock of Natural Aquatic Resources (Vertebrates) Gross benthal fish stock Stock of Natural Aquatic Resources (Vertebrates) Gross Sea Cucumber Stock Stock of Cultivated Aquatic Resources (Invertebrates) Gross Planktivorous Fish Grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources Sand or Gravel? Available for Harvest Ocean Services (Flows to the economy) Coastal geomorphology Greenhouse Gas Sequestration Stock affecting flow of services		Sediment Redox Potential		
Dissolved OxygenPhysiochemical QualityPh (total scale)Physiochemical QualityWater TemperaturePhysiochemical QualitySalinityMean Sea LevelMean Sea LevelGreenhouse Gas RetentionBenthic Production:Respiration RatioSediment Permeability/TurbidityLight Availability/TurbidityLight Availability/TurbidityAverage Sea StateStockOverall Stock StatisticsStock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber StockStock of Cultivated Aquatic Resources (Ivertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Stand or Gravel? Available for HarvestStock of Abiotic Resources (Invertebrates)Stand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesGreenbourse Gai SenuestrationStoch affecting flow of servicesGross Shell fish grownStock affecting flow of servicesStock of Abiotic Resources (Flows to the economy)Stoch affecting flow of servicesGreenbourse Gai SenuestrationSecliment denosition rate	Biogeochemical Cycling	Particulate/Dissolved Organic C:N		
Image: stand s		Dissolved Oxygen		
Physiochemical QualityWater Temperature SalinityPhysiochemical QualitySalinityMean Sea LevelMean Sea LevelGreenhouse Gas RetentionBenthic Production:Respiration Ratio Sediment Permeability Light Availability/Turbidity Average Sea StateStockOverall Stock StatisticsCock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stock Gross Shellfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Stand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions offecting flow of servicesGreenhouse Gas SequestrationStoch and grown of servicesGreenhouse Gas SequestrationStoch and grown of services		pH (total scale)		
Physiochemical QualitySalinityMean Sea LevelMean Sea LevelGreenhouse Gas RetentionBenthic Production:Respiration Ratio Sediment Permeability Light Availability/Turbidity Average Sea StateStockStockStockOverall Stock StatisticsStock of Natural Aquatic Resources (Vertebrates) Stock of Natural Aquatic Resources (Invertebrates) Stock of Cultivated Aquatic Resources (Vertebrates)Gross Shellfish Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Nertebrates) Stock of Cultivated Aquatic Resources (Nertebrates) Gross Planktivorous Fish Grown Gross Shellfish StockStock of Cultivated Aquatic Resources (Nertebrates) Cocan Services (Flows to the economy)Grout Gross Shellfish grownStock of Abiotic Resources (Invertebrates) Cocan Services (Flows to the economy)Stand or Gravel? Available for HarvestGross Shellfish grownGross Shellfish grownStock of Abiotic Resources (Invertebrates) Cocan Services (Flows to the economy)Conditions affecting flow of servicesGross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownGross Shellfish grownStock of Abiotic Resources (Invertebrates)Stand or Gravel? Available for HarvestGross Shellfish grownGross Shellfish grownStock of Abiotic ResourcesStand or Gravel? Available for HarvestGreenhouse (Flows to the economy)Gross Shellfish grownGross Shellfish grownGross Gravel? Available for HarvestGreenhouse Gas SequestrationStock Gravel? Available for HarvestGreenhouse Gas Sequestration <td< td=""><td></td><td>Water Temperature</td></td<>		Water Temperature		
Image: section of the section	Physiochemical Quality	Salinity		
Benthic Production:Respiration RatioGreenhouse Gas RetentionSediment PermeabilityLight Availability/TurbidityLight Availability/TurbidityAverage Sea StateStockOverall Stock StatisticsEcosystem ExtentTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber StockStock of Cultivated Aquatic Resources (Invertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Sand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesGreenhouse Gas SequestrationSadiment denosition rate		Mean Sea Level		
Greenhouse Gas RetentionSediment Permeability Light Availability/Turbidity Average Sea StateStockOverall Stock StatisticsStock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stock Gross Shellfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Coross Shellfish grownStock of Abiotic ResourcesStockStond or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesGross LegulatingConditions affecting flow of servicesGross Agria and		Benthic Production:Respiration Ratio		
Greenhouse Gas Retention Light Availability/Turbidity Average Sea State Average Sea State Stock Overall Stock Statistics Ecosystem Extent Total Area of Soft Bottom/Sediment (Satellite) Stock of Natural Aquatic Resources (Vertebrates) Gross benthal fish stock Stock of Natural Aquatic Resources (Invertebrates) Gross Sea Cucumber Stock Stock of Cultivated Aquatic Resources (Vertebrates) Gross Piscivorous Fish Grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Planktivorous Fish Grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources (Flows to the economy) Coastal geomorphology Greenhouse Gas Sequestration Sediment denocition rate	Constant Constantion	Sediment Permeability		
Average Sea StateStockOverall Stock StatisticsEcosystem ExtentTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stock Gross Shellfish StockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Stond or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingCoastal geomorphologyGreenbouse Gas SequestrationSediment deposition rate	Greenhouse Gas Retention	Light Availability/Turbidity		
StockOverall Stock StatisticsEcosystem ExtentTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stock Gross infaunal fish stockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingCoastal geomorphologyGreenhouse Gas SequestrationSediment denosition rate		Average Sea State		
Ecosystem ExtentTotal Area of Soft Bottom/Sediment (Satellite)Stock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish GrownStock of Cultivated Aquatic Resources (Vertebrates)Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingCoastal geomorphologyGreenhouse Gas SequestrationSediment deposition rate	Stock	Overall Stock Statistics		
Stock of Natural Aquatic Resources (Vertebrates)Gross benthal fish stock Gross infaunal fish stockStock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish Grown Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesGreenhouse Gas SequestrationSediment deposition rate	Ecosystem Extent	Total Area of Soft Bottom/Sediment (Satellite)		
Stock of Natural Aquatic Resources (Vertebrates) Gross infaunal fish stock Stock of Natural Aquatic Resources (Invertebrates) Gross Sea Cucumber Stock Stock of Cultivated Aquatic Resources (Vertebrates) Gross Piscivorous Fish Grown Stock of Cultivated Aquatic Resources (Vertebrates) Gross Planktivorous Fish Grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources Sand or Gravel? Available for Harvest Ocean Services (Flows to the economy) Conditions affecting flow of services Regulating Coastal geomorphology Greenhouse Gas Sequestration Sediment deposition rate	Stock of Natural Aquatic Decourses (Vertabrates)	Gross benthal fish stock		
Stock of Natural Aquatic Resources (Invertebrates)Gross Sea Cucumber Stock Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish Grown Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic Resources (Invertebrates)Gross Shellfish grownOcean Services (Flows to the economy)Sand or Gravel? Available for HarvestRegulatingConditions affecting flow of servicesGross Shellfish grownSediment deposition rate	Stock of Natural Aquatic Resources (Vertebrates)	Gross infaunal fish stock		
Gross Shellfish StockStock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish Grown Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingCoastal geomorphologyGreenhouse Gas SequestrationSediment denosition rate	Stock of Natural Aquatic Resources (Invertebrates)	Gross Sea Cucumber Stock		
Stock of Cultivated Aquatic Resources (Vertebrates)Gross Piscivorous Fish Grown Gross Planktivorous Fish GrownStock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingCoastal geomorphologyGreenbouse Gas SeguestrationSediment deposition rate		Gross Shellfish Stock		
Stock of Cultivated Aquatic Resources (Vertebrates) Gross Planktivorous Fish Grown Stock of Cultivated Aquatic Resources (Invertebrates) Gross Shellfish grown Stock of Abiotic Resources Sand or Gravel? Available for Harvest Ocean Services (Flows to the economy) Conditions affecting flow of services Regulating Coastal geomorphology Greenbouse Gas Seguestration Sediment deposition rate		Gross Piscivorous Fish Grown		
Stock of Cultivated Aquatic Resources (Invertebrates)Gross Shellfish grownStock of Abiotic ResourcesSand or Gravel? Available for HarvestOcean Services (Flows to the economy)Conditions affecting flow of servicesRegulatingConditions affecting flow of servicesGreenbouse Gas SeguestrationSediment deposition rate	Stock of Cultivated Aquatic Resources (Vertebrates)	Gross Planktivorous Fish Grown		
Stock of Abiotic Resources Sand or Gravel? Available for Harvest Ocean Services (Flows to the economy) Conditions affecting flow of services Regulating Conditions affecting flow of services Greenhouse Gas Seguestration Sediment deposition rate	Stock of Cultivated Aquatic Resources (Invertebrates)	Gross Shellfish grown		
Ocean Services (Flows to the economy) Conditions affecting flow of services Regulating Conditions affecting flow of services Coastal geomorphology Sediment deposition rate	Stock of Abiotic Resources	Sand or Gravel? Available for Harvest		
Regulating Conditions affecting flow of services Coastal geomorphology Greenhouse Gas Sequestration	Ocean Services (Flows to the economy)			
Greenhouse Gas Sequestration Sediment deposition rate	Regulating	Conditions affecting flow of services		
Greenhouse Gas Sequestration Sediment denosition rate		Coastal geomorphology		
Sectificate das sequestration	Greenhouse Gas Sequestration	Sediment deposition rate		
Sediment Permeability		Sediment Permeability		

Ecosystem Type: Sediment

Category	Statistic
	Light availability
Coastal Protection	Coastal geomorphology
	Tidal Range
	Water Table Height
	Storm Frequency
	Fluvial sediment deposition
Erosion Control	Sea level rise
	Area of physical structure
Water Purification	Microphytobenthic composition
	Nitrification Rate
Nutrient Cycling	Biological Oxygen Demand
	Sulfate Reduction Rate
	Sediment Organic Carbon Content
Wests Demodiation	Sediment Organic Nitrogen Content
waste Remediation	Plastic Pollutant Load
	Terrestrial Runoff Rate
	Fertilizer Concentrations
Pollutant Remediation	Fish Farm Runoff
	Effluent discharge volumes, content and concentrations??
Provisioning	Conditions affecting flow of services/economic values
	Fish Catch and Value
Maintenance of Fisheries	Catch Per Unit Effort
	Kelp Cover
Cultivated Decourses Extracted	Value of Cultivated Vertebrates & Invertebrates
	Value of Cultivated Macroalgae
Raw Materials Extracted	Alginate Extracted
Cultural	Service levels and values
	Kelp Persistence
T : (D :	Scuba Diving & Snorkeling Frequency
Tourism/Recreation	Spatial coverage of Marine Protected Area
	Recreational Fisheries
Education /D	Net Expense on Research
Education/Research	Net Expense on Education
Religious/Spiritual/Indigenous	Cultural Heritage Area
Ocean Governance	Activities, status, expenditures, and value statistics
	License Fees/Taxes
Regulation	Taxes on Cultivated Resources
	Taxes on Nautral Resources
Enforcement	Permit Income

Ecosystem Type: Sediment

Category	Statistic
	Penalties/Fines
Restoration/Conservation	Transplant costs
	Invasive Species Abundance
	Fish Biomass
	Number/Size of Marine Protected Areas
Mitigation	Area/Abundance of Urchins Removed
	Area Restored with Kelp
Gross value added by sector	Gross value added of all Ocean Services by sector
Expenditure	Expenditures on environmental protection and maintenance

Ecosystem Type: Salt Marshes & Estuaries

Category	Statistic
Ocean Assets	
Condition	Overall Condition Statistics
Biodiversity	Seagrass/Vegetation Cover
	Prey Fish Abundance
	Healthy Predator Populations
Ecosystem Fitness	Vegetation Type
	Seagrass Abundance/Cover
	Plant Height
Biogeochemical Cycling	Sediment Redox Potential
	Hypersalinity
	Inundation Depth
	C:N Sediment ratios
	Submerged Plant Growth Form
	Water Temperature
Physiochemical Quality	Light Availability
	Salinity
	Nitrification Rate
Greenhouse Gas Retention	Carbon Dioxide Flux
	Total Water Storage
	Total Organic Carbon
Stock	Overall Stock Statistics
	Seagrass/Vegetation Cover
Ecosystem Extent	Total Area of Saline High Tide Extent (satellite)
Stock of Natural Aquatic Resources (Vertebrates)	Stock Available for Artisinal Fishery
	Stock of Commercial Fish
	Stock of Recreational Fish
Stock of Natural Aquatic Resources (Invertebrates)	Stock of Shellfish Available for Harvest

WP2 Technical Report November 2021

Ecosystem Type: Salt Marshes & Estuaries

Category	Statistic
	Stock of Shrimp/Prawns Available for Harvest
	Stock of Crab Available for Harvest
Stock of Cultivated Aquatic Resources (Vertebrates)	Gross Planktivorous Fish Grown
Stock of Cultivated Aquatic Resources (Invertebrates)	Gross Shellfish grown
Stock of Abiotic Resources	Minerals/Fertilizers Available for Extraction
Ocean Services (Flows to the economy)	
Regulating	Conditions affecting flow of services
	Coastal geomorphology
	Sediment deposition rate
Greenhouse Gas Sequestration	Vegetation Cover
	Aquatic Plant Leaf Size
	Coastal geomorphology
	Tidal Range
Coastal Protection	Water Table Height
	Rooted Plant Cover
	Storm Frequency
	Fluvial sediment deposition
Erosion Control	Sea level rise
	Growth Form: Submerged
	Aquatic Plant Leaf Size
Water Purification	Sediment/Nutrient Load
	Root Type
	Nitrification Rate
Nutrient Cycling	Biological Oxygen Demand
	Sulfate Reduction Rate
	Sediment Organic Carbon Content
Waste Remediation	Sediment Organic Nitrogen Content
	Terrestrial Runoff Rate
Pollutant Remediation	Fertilizer Concentrations
	Sewage Waste Concentrations
	Effluent discharge volumes, content and concentrations??
Provisioning	Conditions affecting flow of services/economic values
Maintenance of Fisheries	Prey Fish Abundance
	Hydrodynamic Conditions
	Primary Productivity Rate (Chl a)
	Vegetation Cover
Cultivated Resources Extracted	Value of Cultivated Vertebrates
	Value of Cultivated Invertebrates
Raw Materials Extracted	Agricultural Products Extracted

Ecosystem Type: Salt Marshes & Estuaries

Category	Statistic
Cultural	Service levels and values
Tourism/Recreation	Accessible Area for Recreation
	Water Quality
	Marine Mammal Tourism
	Abundance of Visually attractive flora
	Recreation Generated Income
Education/Research	Net Expense on Research
	Net Expense on Education
	Habitat quality and area
Religious/Spiritual/Indigenous	Cultural Heritage Area
Ocean Governance	Activities, status, expenditures, and value statistics
Regulation	License Fees/Taxes
	Taxes on Cultivated Resources
	Taxes on Nautral Resources
Enforcement	Permit Income
	Penalties/Fines
Restoration/Conservation	Area Conserved (no take)
	Area Conserved (recreational take only)
	Biomass Restocked (vertebrates)
	Biomass Restocked (invertebrates)
Mitigation	Length of Engineered Coastal Barriers
	Area Geoengineered
Gross value added by sector	Gross value added of all Ocean Services by sector
Expenditure	Expenditures on environmental protection and maintenance